

RAPPORT D'ETUDE n°15-15-60-0149-TMA Rev2

ÉTUDE D'IMPACT ACOUSTIQUE Projet de Parc éolien des Gassouillis – commune de Bussière-Poitevine (87)

DOCUMENT EDITE PAR:

AGENCE BRETAGNE

Centre d'Affaires « SECAP » 12A, rue du Pâtis Tatelin CS80635 35706 RENNES Cedex 7

AGENCE EST - SIEGE SOCIAL Centre d'Affaires Les Nations

B.P. 10101 54503 VANDOEUVRE-LES-NANCY

Tél.: +33 3 83 56 02 25 Fax: +33 3 83 56 04 08

Courriel: venathec@venathec.com

AGENCE ILE-DE-FRANCE NORD 95400 ARNOUVILLE

AGENCE ILE-DE-FRANCE SUD 94450 LIMEIL BREVANNES

AGENCE SUD 13857 AIX EN PROVENCE

INTERVENANTS:

M. Thomas LOUIS M. Thierry MARTIN

Client

Établissement Adresse

Tél.

Fax

VALECO INGENIERIE

188 Rue Maurice Béjart, 34184 Montpellier Cedex 4

Interlocuteur

Nom

Anthony ROL

Fonction

Ingénieur projets

Courriel

anthonyrol@groupevaleco.com

Tél. 04.99.23.25.17

1

Diffusion

Copie

Papier

Informatique X

Révision

Date

22/08/2016

Rédaction Vérification
Thierry MARTIN Kamal BOUBKOUR

S.A.S av capital de 25**0 000€** - R.C.S. NANCY = SIRET 423 893 296 **000**16 = APE 7112 B

SOMMAIRE

1.	OBJET DE L'ETUDE	_ 4
2.	GLOSSAIRE	_ 5
3.	CONTEXTE RÉGLEMENTAIRE	_ 8
3.1.		8
3.2.	Mise en application	8
3.3.	·	8
3.4.	·	8
3.5.	Valeur limite à proximité des éoliennes	9
3.6.	Tonalité marquée	9
3.7.		9
4.	PRÉSENTATION DU PROJET	10
4.1. 5.	Identification des points de mesure	_10 19
5.1.		19
5.1. 5.2.		- ' / 19
5.2. 5.3.		- ' / 19
5.4.		_ '
6. ··	ANALYSE DES MESURES	
6.1.		24
6.2.		_24
6.3.		_27
6.4.		_46
6.5.		_47
7.	CONCLUSION SUR LA PHASE DE MESURAGE	48
8.	ÉTUDE DE L'IMPACT ACOUSTIQUE ENGENDRÉ PAR L'ACTIVITÉ DU PARC ÉOLIEN	
8.1.		_49
8.2.		_50
8.3.		_50
8.4.		_51
8.5.	•	_52
8.6. 9.	OPTIMICATION DU PRO LET	_53 _ 55
9.1.		. 55
9.2.		_56
9.3.		_56
 9.4. 		_
7. 4 . 9.5.	-	_57 60
	NIVEAUX DE BRUIT SUR LE PERIMETRE DE L'INSTALLATION	_61
11.	TONALITE MARQUEE	62
	CONCLUSION	63
15.	ANNEXES	64

1. **OBJET DE L'ETUDE**

Dans le cadre du projet d'implantation d'un parc éolien sur le site des Gassouillis (87), la société VALECO INGENIERIE a confié au bureau d'études acoustiques VENATHEC le volet bruit.

L'objectif de la présente étude d'impact acoustique consiste à évaluer les risques de dépassement des valeurs réglementaires, liés à la mise en place des éoliennes, selon les dernières normes et textes réglementaires référents :

- Arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation ICPE;
- Du projet de norme NF S PR 31-114 « Acoustique Mesurage du bruit dans l'environnement avec et sans activité éolienne »;
- Norme NF S 31-010 « Caractérisation et mesurage des bruits de l'environnement » ;
- Guide de l'étude d'impact sur l'environnement des parcs éoliens actualisé en 2010 par le Ministère de l'Écologie, de l'Énergie, du Développement durable et de la Mer.

Le rapport comporte :

- Un récapitulatif du contexte réglementaire et normatif;
- Une présentation du projet et de l'intervention sur site ;
- Une analyse des mesures des niveaux sonores résiduels aux abords des habitations les plus exposées;
- Une estimation des niveaux sonores après implantation des éoliennes;
- Une évaluation des dépassements prévisionnels des seuils réglementaires et du risque de nonconformité.

2. **GLOSSAIRE**

Pour les besoins du présent document, les termes et définitions suivants s'appliquent :

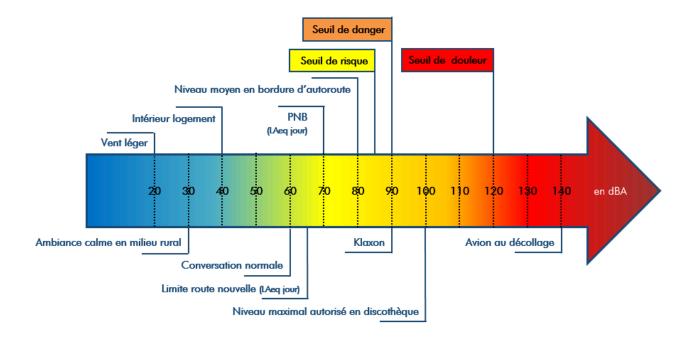
Le décibel (dB)

Le son est une sensation auditive produite par une variation rapide de la pression de l'air.

Le bruit étant caractérisé par une échelle logarithmique, on ne peut pas ajouter arithmétiquement les décibels de deux bruits pour arriver au niveau sonore global.

À noter 2 règles simples :

- 40 dB + 40 dB = 43 dB;
- $40 \text{ dB} + 50 \text{ dB} \approx 50 \text{ dB}.$


Le décibel pondéré A (dBA)

Pour traduire les unités physiques dB en unités physiologiques dBA représentant la courbe de réponse de l'oreille humaine, il est convenu de pondérer les niveaux sonores pour chaque bande d'octave. Le décibel est alors exprimé en décibels A : dBA.

A noter 2 règles simples :

- L'oreille fait une distinction entre deux niveaux sonores à partir d'un écart de 3 dBA;
- Une augmentation du niveau sonore de 10 dBA est perçue par l'oreille comme un doublement de la puissance sonore.

Echelle sonore

Octave / Tiers d'octave

Intervalle de fréquence dont la plus haute fréquence (f 2) est le double de la plus basse (f 7) pour une octave et la racine cubique de 2 pour le tiers d'octave. L'analyse en fréquence par bande de tiers d'octave correspond à la résolution fréquentielle de l'oreille humaine.

1/1 octave	1/3 octave
f2 = 2 * f1 $fc = \sqrt{2} * f1$ $\Delta f / fc = 71\%$	$f2 = {}^{3}\sqrt{2} * f1$ $\Delta f / fc = 23\%$

fc : fréquence centrale $\Delta f = f 2 - f 1$

Niveau de bruit équivalent Lea

Niveau de bruit en dB intégré sur une période de mesure. L'intégration est définie par une succession de niveaux sonores intermédiaires mesurés selon un intervalle d'intégration. Généralement dans l'environnement, l'intervalle d'intégration est fixé à 1 seconde (appelé Leq court). Le niveau global équivalent se note Leq, il s'exprime en dB. Lorsque les niveaux sont pondérés selon la pondération A, on obtient un indicateur noté LA,eq.

Niveau résiduel

Le niveau résiduel caractérise le niveau de bruit obtenu dans les conditions environnementales initiales du site, c'est-à-dire en l'absence du bruit généré par les éoliennes (niveau de bruit avec éoliennes à l'arrêt).

Niveau ambiant

Le niveau ambiant caractérise le niveau de bruit obtenu en considérant l'ensemble des sources présentes dans l'environnement du site. En l'occurrence, ce niveau sera la somme entre le bruit résiduel et le bruit généré par les éoliennes (niveau de bruit avec éoliennes en fonctionnement).

Emergence acoustique (E)

L'émergence acoustique est fondée sur la différence entre le niveau de bruit équivalent pondéré A du bruit ambiant comportant le bruit particulier de l'équipement en fonctionnement (en l'occurrence celui des éoliennes) et celui du résiduel.

$$E = L_{eq} \, ambiant - L_{eq} \, r\acute{e}siduel$$

$$E = L_{eq} \, \acute{e}oliennes \, en \, fonctionnement - L_{eq} \, \acute{e}oliennes \, \grave{a} \, l'arr\^{e}t$$

$$E = L_{eq} \, \acute{e}tat \, futur \, pr\acute{e}visionnel - L_{eq} \, \acute{e}tat \, actuel \, (initial)$$

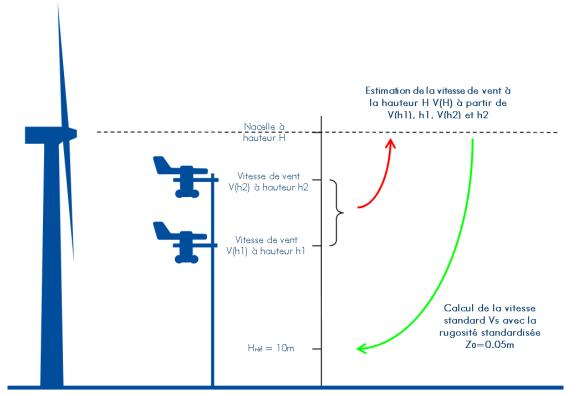
Niveau fractile (Ln)

Anciennement appelé indice statistique percentile Ln.

Le niveau fractile Ln représente le niveau sonore qui a été dépassé pendant n % du temps du mesurage. L'indice LA,50 employé dans le domaine éolien caractérise ainsi le niveau médian : dépassé pendant 50 % du temps de l'intervalle d'observation.

Niveau de puissance acoustique

Ce niveau caractérise l'énergie acoustique d'une source sonore. Elle est exprimée en dBA et permet d'évaluer le niveau de bruit émis par un équipement indépendamment de son environnement.


Vitesse de vent standardisée - Hauteur de référence : H_{ref} = 10m

La corrélation des niveaux de bruit avec la vitesse de vent s'effectue à la hauteur de référence fixée à 10m. Cette vitesse de vent correspond à la vitesse de vent dite « standardisée » qui est égale à la vitesse <u>calculée</u> à 10m de haut sur un sol présentant une longueur de rugosité de référence fixée à 0,05m.

Cette vitesse se calcule à partir de la vitesse « réelle » à hauteur de nacelle des éoliennes (soit la vitesse est mesurée directement à hauteur de moyeu (anémomètre nacelle), soit elle est extrapolée à hauteur de moyeu à partir des vitesses et du gradient de vent mesurés à différentes hauteurs) qui est ensuite convertie à la hauteur de référence (10m) à l'aide d'une longueur de rugosité standardisée à 0,05m et selon un profil de variation en loi logarithmique.

Ces vitesses de vent standardisées, considérées pour les études acoustiques peuvent être assimilées à des vitesses « virtuelles », représentant les vitesses de vent reçues par l'éolienne, auxquelles est appliqué un facteur K = constante qui est fonction d'un type de sol standard.

Pour ces raisons, les vitesses standardisées (à hauteur de référence) sont différentes des vitesses mesurées à 10m.

(Source : Projet de norme NFS 31-114)

Norme NFS 31-010

La norme NF S 31-010 « Acoustique – Caractérisation et mesurage des bruits de l'environnement – Méthodes particulières de mesurage » de 1996 a été élaborée au sein de la Commission de Normalisation S30J « Bruit dans l'environnement » d'AFNOR. Elle est utilisée dans le cadre de la réglementation « Bruit de voisinage ». Elle indique la méthodologie à appliquer concernant la réalisation de la mesure.

Projet de Norme NFS 31-114

Le projet de norme intitulé « Acoustique – Mesurage du bruit dans l'environnement avec et sans activité éolienne » indique la méthodologie à appliquer en prenant en considération la problématique éolienne, notamment celle posée par le mesurage en présence de vent.

3. CONTEXTE RÉGLEMENTAIRE

3.1. Arrêté du 26 août 2011 - ICPE

L'Arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement, constitue désormais le texte réglementaire de référence.

3.2. Mise en application

« L'ensemble des dispositions du présent arrêté s'appliquent aux installations pour lesquelles une demande d'autorisation est déposée à compter du lendemain de la publication du présent arrêté ainsi qu'aux extensions ou modifications d'installations existantes régulièrement mises en service nécessitant le dépôt d'une nouvelle demande d'autorisation en application de l'article R. 512-33 du code de l'environnement au-delà de cette même date. »

« Pour les installations ayant fait l'objet d'une mise en service industrielle **avant le 13 juillet 2011**, celles ayant obtenu **un permis de construire** avant cette même date ainsi que celles pour lesquelles l'arrêté **d'ouverture d'enquête publique** a été pris avant cette même date, dénommées « installations existantes » dans la suite du présent arrêté :

— les dispositions des articles de la section 4, de l'article 22 et des articles de la section 6 sont applicables au 1er janvier 2012 ; »

La section 6 correspondant à la section « Bruit ».

3.3. Les changements

Les principales évolutions apportées par ce nouveau cadre réglementaire sont :

- Modification du seuil déclenchant le critère d'émergence, fixé à 35 dBA;
- Suppression des émergences spectrales limites à l'intérieur des habitations ;
- Instauration du critère de tonalité marquée ;
- Niveau sonore limite sur le périmètre de l'installation ;
- Valeur du correctif selon la durée d'apparition ;
- Respect des recommandations du projet de norme NFS 31-114 dans sa version de juillet 2011.

3.4. Critère d'émergence

Le tableau ci-dessous précise les valeurs d'émergence sonore maximale admissible, fixées en niveaux globaux. Ces valeurs sont à respecter pour les niveaux sonores en zone à émergence réglementées lorsque le seuil de niveau ambiant est dépassé.

Niveau ambiant existant incluant le bruit de	Emergence maximale admissible				
l'installation	Jour (7h / 22 h)	Nuit (22h / 7h)			
Lamb > 35 dBA	5 dBA	3 dBA			

Valeur limite à proximité des éoliennes

Le tableau ci-dessous précise les valeurs du niveau de bruit maximal à respecter en tout point du périmètre de mesure défini ci-après :

Niveau de bruit maximal sur le périmètre de mesure						
Jour (7h / 22 h) Nuit (22h / 7h)						
70 dBA	60 dBA					

Périmètre de mesure : « Périmètre correspondant au plus petit polygone dans lequel sont inscrits les disques de centre chaque aérogénérateur et de rayon R défini comme suit : »

$$R = 1.2 x$$
 (Hauteur de moyeu + Longueur d'un demi-rotor)

Cette disposition n'est pas applicable si le bruit résiduel pour la période considérée est supérieur à cette limite.

3.6. Tonalité marquée

La tonalité marquée consiste à mettre en évidence la prépondérance d'une composante fréquentielle. Dans le cas présent, la tonalité marquée est détectée à partir des niveaux spectraux en bande de tiers d'octave et s'établie lorsque la différence :

Leq sur la bande de 1/3 octave considérée - Leq sur les 4 bandes de 1/3 octave les plus proches*

est supérieure ou égale à :

Tonalité marquée – Différence limite					
50 Hz à 315 Hz 400 Hz à 8000 Hz					
10 dB	5 dB				

Incertitudes 3.7.

« Lorsque des mesures sont effectuées pour vérifier le respect des présentes dispositions, elles sont effectuées selon les dispositions [...] de la norme NFS 31-114 dans sa version de juillet 2011. »

Ce projet de norme énonce la mise en place d'une incertitude :

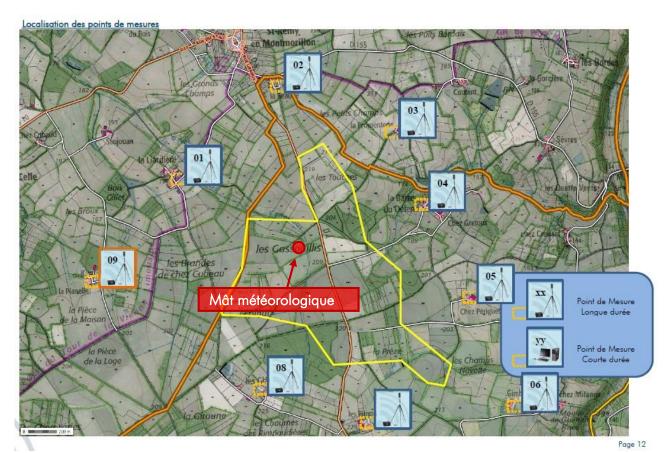
« L'incertitude totale sur l'indicateur de bruit associé à une classe homogène et à une classe de vitesse de vent est composée d'une incertitude (type A) due à la distribution d'échantillonnage de l'indicateur considéré et d'une incertitude métrologique (type B) sur les mesures des descripteurs acoustiques. »

^{*} les 2 bandes immédiatement inférieures et celles immédiatement supérieures.

PRÉSENTATION DU PROJET 4.

4.1. Identification des points de mesure

Le projet prévoit l'implantation de plusieurs éoliennes de type G114 de chez Gamesa d'une hauteur de moyeu de 125 mètres et se situe sur la commune de Bussière-Poitevine (87).


La société VALECO INGENIERIE, en concertation avec VENATHEC, a retenu 9 points de mesure distincts représentant les habitations susceptibles d'être les plus exposées :

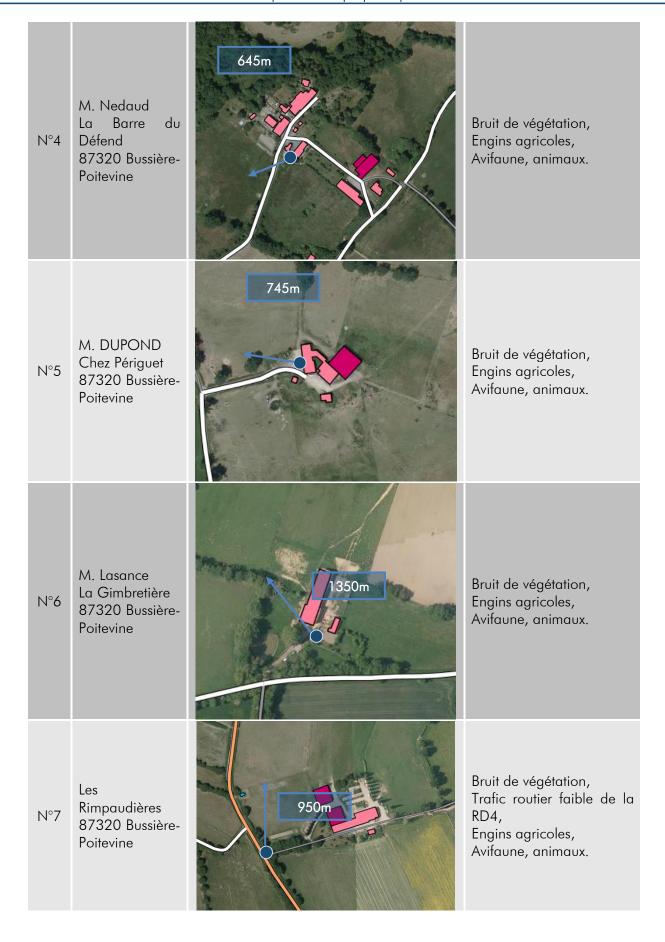
- Point n°1 : La Liardière ;
- Point n°2 : La Beaune ;
- Point n°3: La Fromenterie;
- Point n°4 : La Barre du Défend ;
- Point n°5 : Chez Périguet ;
- Point n°6 : La Gimbretière ;
- Point n°7: Les Rimpaudières;
- Point n°8 : Les Glayolades ;
- Point n°9 : La Planelle.

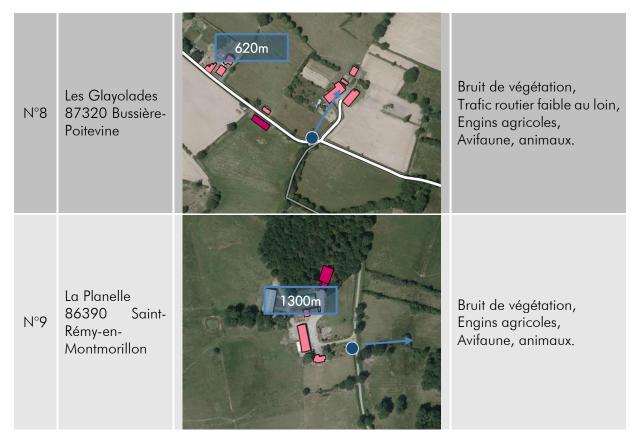
Emplacement des points de mesures :

Dans la mesure du possible, les microphones ont été positionnés à l'abri :

- du vent, de sorte que son influence sur le microphone soit la plus négligeable possible ;
- de la végétation, pour refléter l'environnement sonore le plus indépendamment possible des saisons;
- des infrastructures de transport proches, afin de s'affranchir de perturbations trop importantes dont on ne peut justifier entièrement l'occurrence.

Vue aérienne du site


Remarque


Au point n°7, le riverain n'a pas souhaité accueillir un sonomètre dans sa propriété, nous avons par conséquent effectué une mesure de courte durée à proximité de celle-ci.

Aux points n°2, n°8 et n°9, aucun riverain n'a pu être contacté pour accueillir un sonomètre dans sa propriété, nous avons donc également réalisé une mesure de courte durée à proximité de ces trois zones d'habitations.

Ces mesures seront mises en corrélation avec les mesures « longue durée » effectuées sur les autres points, afin de déterminer le niveau de bruit résiduel à retenir dans le cadre de l'étude.

Point	Lieu	Vue aérienne	Sources sonores environnantes
N°1	M. Latour La Liardière 86390 Saint- Rémy-en- Montmorillon	730m	Bruit de végétation, Passages de voitures, Engins agricoles, Bruits de voisinage, Avifaune, animaux.
N°2	La Beaune 87320 Bussière- Poitevine	890m	Bruit de végétation, Trafic routier faible au loin, Engins agricoles, Avifaune.
N°3	M. Zeeman La Fromenterie 86390 Saint- Rémy-en- Montmorillon	650m	Bruit de végétation, Engins agricoles, Trafic ferroviaire, Avifaune, animaux.

- : Emplacement du microphone pendant la mesure
- : Habitation
- : Bâtiment non habité
- → : Direction et distance à l'éolienne la plus proche

Représentativité du lieu de mesure par rapport à la zone d'habitations considérée :

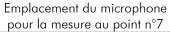
Point	Observations
N°1, N°4, N°8, N°9	L'environnement global de la zone d'habitations présente une végétation modérée. La mesure est réalisée en périphérie du village où les bruits de voisinage / d'activité humaine sont jugés moins importants. La mesure est réalisée dans la partie de la zone d'habitation la plus proche des éoliennes envisagées. Les sources sonores environnantes semblent caractéristiques de la zone d'habitations.
N°2, N°7	L'environnement global de la zone d'habitations présente une végétation modérée. La mesure n'a pu être réalisée dans la partie de la zone d'habitation la plus proche des éoliennes envisagées. Néanmoins, les sources sonores environnantes semblent caractéristiques de la zone d'habitations.
N°3	L'environnement global de la zone d'habitations présente une végétation dense. Le point de mesure correspond à une habitation isolée. Les sources sonores environnantes semblent caractéristiques de la zone d'habitations.
N°5, N°6	L'environnement global de la zone d'habitations présente une végétation modérée. Le point de mesure correspond à une habitation isolée. Les sources sonores environnantes semblent caractéristiques de la zone d'habitations.

Photographies des 9 points de mesure

Emplacement du microphone pour la mesure au point n°1

Emplacement du microphone pour la mesure au point n°2

Emplacement du microphone pour la mesure au point n°3


Emplacement du microphone pour la mesure au point n°4

Emplacement du microphone pour la mesure au point n°5

Pas de photo disponible

Emplacement du microphone pour la mesure au point n°8

Emplacement du microphone pour la mesure au point n°9

4.2. Variante d'implantation étudiée

Suivant la configuration du projet, plusieurs variantes d'implantation ont été confrontées. Trois variantes ont été développées :

Variante A: 7 éoliennes alignées sur l'ensemble du site avec une hauteur maximale de 150m.

Variante B: 6 éoliennes alignées sur deux lignes du site (3 + 3) avec une hauteur maximale de 200m.

Variante C: 7 éoliennes alignées sur deux lignes du site (4 + 3) avec une hauteur maximale de 180m.

Dans cette étude, la variante C est privilégiée. En effet, cette variante apporte un compromis par rapport à la distance vis-à-vis des habitations et donc à l'impact acoustique du projet sur celles-ci et le nombre d'éoliennes envisagées sur le site.

5. DEROULEMENT DU MESURAGE

Les mesures ont été effectuées conformément :

- Au projet de norme NF S 31-114 « Acoustique Mesurage du bruit dans l'environnement avec et sans activité éolienne »;
- A la norme NF \$ 31-010 « Caractérisation et mesurage des bruits de l'environnement » ;
- À la note d'estimation de l'incertitude de mesurage décrite en annexe.

5.1. Opérateur concerné par le mesurage

M. Thomas LOUIS, technicien acousticien;

La société est enregistrée au RCS Nancy B sous le numéro 423 893 296 00016. Pour plus d'informations sur la société, visitez le site www.venathec.com

5.2. Déroulement général

Période de mesure	Du 23 avril au 04 mai 2015
Durée de mesure	12 jours pour chacun des 5 points longue durée

Méthodologie et appareillages de mesure

Mesure acoustique

Méthodologie

Les mesurages acoustiques ont été effectués à des emplacements où le futur impact sonore des éoliennes est jugé le plus élevé.

La hauteur de mesurage au-dessus du sol était comprise entre 1,20 m et 1,50 m.

Ces emplacements se trouvaient à plus de 2 mètres de toute surface réfléchissante.

La position des microphones a été choisie de manière à caractériser un lieu de vie.

Appareillage utilisé

Les mesurages ont été effectués avec des sonomètres intégrateurs de classe 1.

Avant et après chaque série de mesurage, la chaîne de mesure a été calibrée à l'aide d'un calibreur conforme à la norme EN CEI 60-942.

Un écart inférieur à 0,5 dB a été vérifié et atteste de la validité des mesures.

Comme spécifié dans la norme NF S 31-010, seront conservés au moins 2 ans :

- La description complète de l'appareillage de mesure acoustique ;
- L'indication des réglages utilisés ;
- Le croquis des lieux et le rapport d'étude ;
- L'ensemble des évolutions temporelles et niveaux pondérés A sous format informatique.

Mesure météorologique

Méthodologie

Les mesurages météorologiques ont été effectués au centre de la zone où l'implantation des éoliennes est envisagée, à 10m au-dessus du sol. Les vitesses de vent standardisées sont ensuite déduites selon un profil vertical représentatif du site (cf. Annexe E Choix des paramètres retenus).

Cette vitesse à Href = 10m a été utilisée pour caractériser l'évolution du bruit en fonction de la vitesse du vent dans l'ensemble des analyses.

Appareillage utilisé

Les conditions météorologiques sont enregistrées à l'aide de notre mât de 10 mètres de hauteur, sur lequel est positionnée une station d'enregistrement (girouette et anémomètre).

Nous utilisons un anémomètre à coupelles « first class » adapté aux mesures de vents horizontaux. Nos anémomètres optico-électroniques sont accompagnés d'un certificat de calibration, correspondant aux standards internationaux (Certifié selon IEC 61400-12-1 / MEASNET).

Dotés d'une incertitude de mesure de 3 % jusqu'à une vitesse de vent de 50 m/s, d'une résolution de 0,05 m/s et d'une fréquence d'échantillonnage d'1 Hertz, ces capteurs nous permettent une mesure fiable. Nos mesures de directions de vent sont réalisées à l'aide de girouettes précises à $\pm 2^{\circ}$, dotées d'une résolution de 1° et permettent une mesure fiable à 360° (sans trou de nord).

Illustration d'implantation d'un mât météorologique similaire

Conditions météorologiques rencontrées

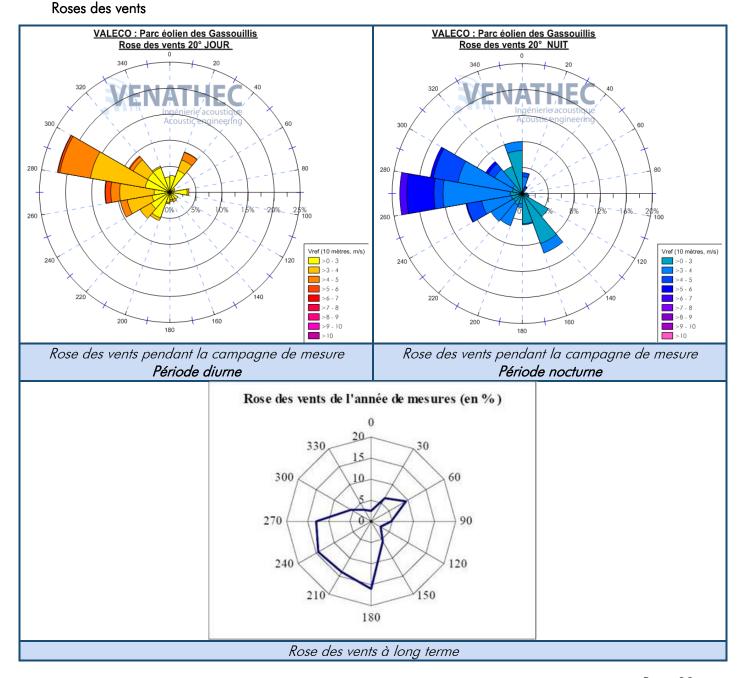
Description des conditions météorologiques

Les conditions météorologiques peuvent influer sur les mesures de deux manières :

- par perturbation du mesurage, en particulier par action sur le microphone, il convient donc de ne pas faire de mesurage en cas de pluie marquée;
- lorsque la (les) source(s) de bruit est (sont) éloignée(s), le niveau de pression acoustique mesuré est fonction des conditions de propagation liées à la météorologie. Cette influence est d'autant plus importante que l'on s'éloigne de la source.

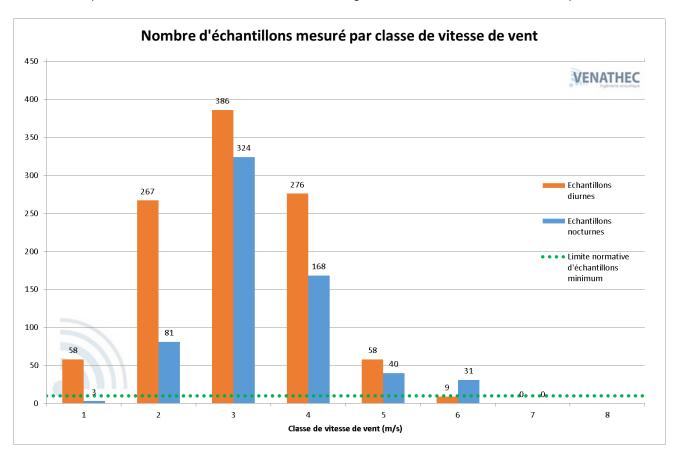
Conditions météorologiques rencontrées pendant le mesurage

Sources d'informations


Périodes de précipitation ayant perturbé les mesures Vitesse de vent jusqu'à 6 m/s à H_{ref}=10m

Direction dominante de vent : Ouest

Mât météorologique à H=10 m (matériel VENATHEC)


Données météo France (pluviométrie)

Constatations de terrain

Nombre de couples « Niveau de bruit/ Vitesse de vent » moyennés sur 10 minutes sur l'ensemble de la période de mesure

D'après la dernière version du projet de norme NF S 31-114, au moins 10 couples « Niveau de bruit/Vitesse de vent » par classe considérée, sont nécessaires pour calculer un indicateur de bruit (une classe correspond à une vitesse de vent de 1 m/s de largeur, centrée sur une valeur entière).

Commentaire

Le nombre d'échantillon mesuré est supérieur à 10 jusqu'à 5 m/s en période diurne et 6 m/s en période nocturne.

ANALYSE DES MESURES 6.

6.1. Principe d'analyse

Intervalle de base d'analyse

L'intervalle de base a été fixé à 10 minutes ; les vitesses de vent ont donc été moyennées sur 10 minutes. Les niveaux résiduels L_{res,10min} ont été calculés à partir de l'indice fractile L_{A,50}, déduit des niveaux L_{Aea,1s}.

Classe homogène

Une classe homogène est définie, selon le projet de norme NF \$ 31-114 :

- Est fonction « des facteurs environnementaux ayant une influence sur la variabilité des niveaux sonores (variation de trafic routier, activités humaines, chorus matinal, orientation du vent, saison
- « Doit prendre en compte la réalité des variations de bruits typiques rencontrés normalement sur le terrain à étudier, tout en considérant également les conditions d'occurrence de ces bruits. »
- Présente une unique variable influente sur les niveaux sonores : la vitesse de vent. Une vitesse de vent ne peut donc pas être considérée comme une classe homogène.

Une ou plusieurs classes homogènes peuvent être nécessaires pour caractériser complètement une période particulière spécifiée dans des normes, des textes réglementaires ou contractuels.

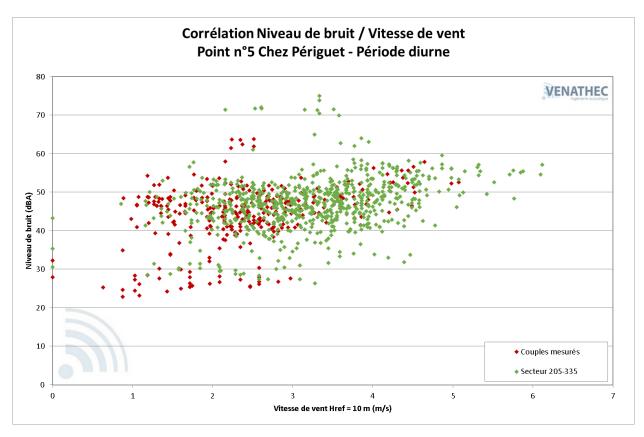
Ainsi, une classe homogène peut être définie par l'association de plusieurs critères tels que les périodes jour / nuit ou plages horaires (7h-22h et 22h-7h), les secteurs de vent, les activités humaines...

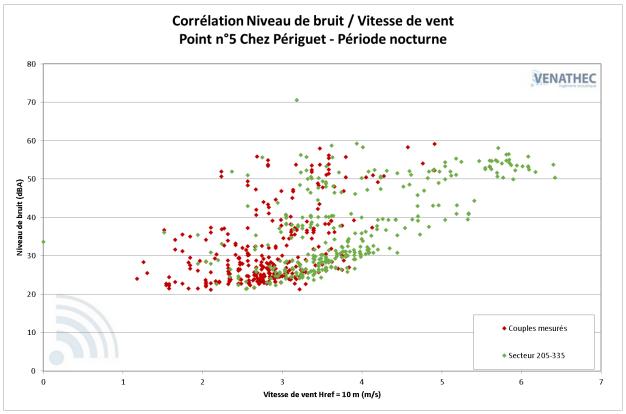
Une analyse des directions observées lors de la campagne de mesure est réalisée sur chaque intervalle de référence.

Remarques

Nous avons porté un intérêt particulier dans l'analyse des périodes transitoires entre le jour et la nuit et inversement qui, sur certaines mesures, ont une influence.

6.2. Choix des classes homogènes

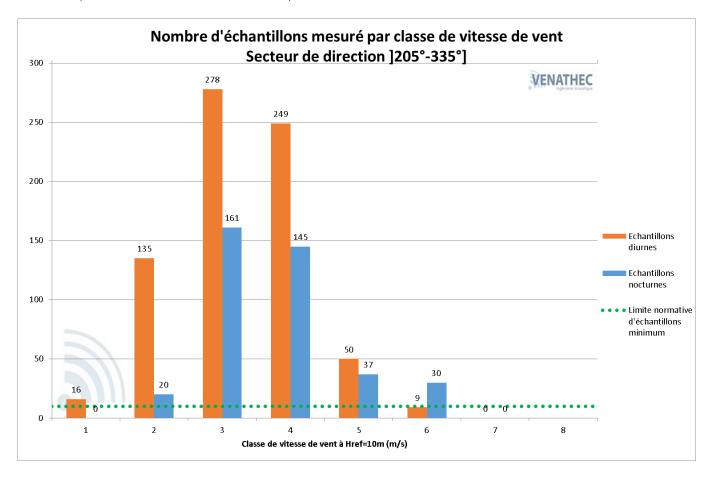

Les roses des vents présentées précédemment nous ont permis de définir une direction de vent principale pendant la campagne de mesures :


Direction centrée sur le secteur [205°; 335°] – O.

D'après les mesures de vent à long terme, la direction sud-ouest/ouest est identifiée comme une des directions dominantes du site.

Analyse des classes homogènes sur un point de mesure type : Point n°5 Chez Périguet

Les graphiques ci-dessous présentent l'ensemble des données collectées en période diurne et nocturne, en distinguant le secteur de direction défini précédemment.



Commentaires

Ces nuages de points comparatifs ont montré, notamment en période nocturne, que le secteur de vents semble prendre une tendance d'évolution différente à partir de 3 m/s.

Il a donc été défini que ce secteur de direction de vent appartient bien à une classe homogène.

Les graphiques ci-dessous présentent le comptage des échantillons collectées en période diurne et nocturne, pour le secteur de direction défini précédemment.

Commentaires

Le secteur de direction choisi présente suffisamment de couples pour les vitesses de vent entre 2 et 6 m/s en période diurne et entre 2 et 5 m/s en période nocturne.

Classes homogènes retenues pour l'analyse

A la vue des résultats précédents, il a donc été retenu deux classes homogènes pour l'analyse :

- Classe homogène 1 : Secteur | 205° ; 335° | O en période diurne printanière de 7h à 22h ;
- Classe homogène 2 : Secteur [205°; 335°] O en période nocturne printanière de 22h à 7h.

L'analyse des indicateurs de niveaux sonores et des émergences réglementaires a donc été entreprise pour ces deux classes homogènes.

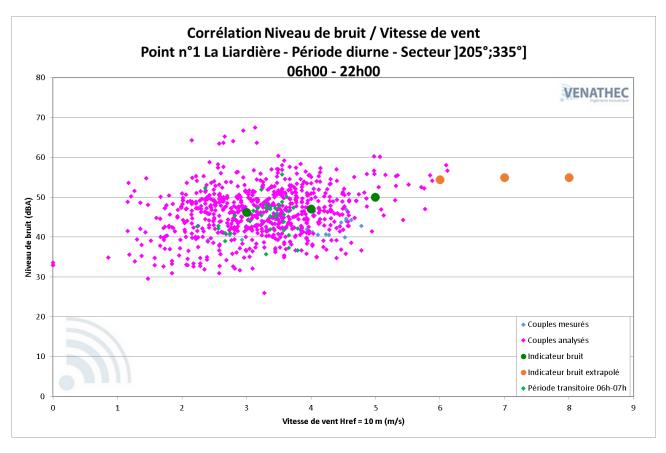
6.3. Nuages de points - Comptage

Pour chaque classe homogène et pour chaque classe de vitesse de vents étudiés, un niveau sonore représentatif de l'exposition au bruit des populations a été associé.

Ce niveau sonore, associé à une classe homogène et à une classe de vitesse de vent, est obtenu par traitement des descripteurs des niveaux sonores contenus dans la classe de vitesse de vent. Il est appelé indicateur de bruit de la classe de vitesse de vent.

Pour chaque point de mesure et pour les périodes diurne et nocturne respectivement, nous présentons :

- Le nombre de couples analysés. Ce comptage ne comprend que les périodes représentatives de l'ambiance sonore normale (les périodes comprenant la présence d'un bruit parasite, de pluie marquée, d'orientation de vent occasionnelle, etc. ont été supprimées). Ce comptage correspond au nombre de couples utilisés pour l'estimation des niveaux résiduels représentatifs.
- L'incertitude de mesure (le calcul est réalisé suivant les recommandations du projet de norme NFS 31-114 ; la méthode de calcul est définie en annexes).
- Les nuages de points permettant de visualiser les évolutions des niveaux sonores en fonction des vitesses de vent. Nous représentons en bleu les couples « Niveau de bruit/Vitesse de vent » supprimés et en rose les couples analysés.


L'indicateur de bruit par classe de vitesses de vent est représenté par des points verts.

Des indicateurs de bruit théoriques sont représentés par des points oranges. Ces points indiquent les niveaux de bruit extrapolés en fonction des niveaux mesurés sur la classe de vitesses de vent étudiée et sur les classes de vitesses contiguës. Ces indicateurs visent à établir une certaine évolution théorique des niveaux sonores avec la vitesse de vent.

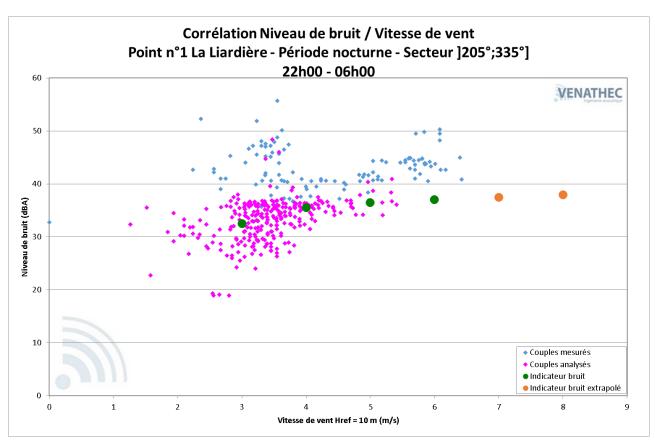
Point n°1: La Liardière

En période diurne

Classe de vitesse de vent standardisée à H _{ref} = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
Nombre de couples analysés	307	236	38	8	0	0
Indicateur de bruit retenu	46,0	47,0	50,0	54,5	55,0	55,0
Incertitude Uc(Res)	1,3	1,3	1,8	1,9		

Commentaires

Les couples (L_{res} — Vitesse de vent)_{10 minutes} mesurés pour les vitesses de vent de 3 à 6 m/s à H_{ref} = 10 m sont suffisants pour établir une estimation de niveaux résiduels représentatifs de la situation sonore du site. Les niveaux retenus pour les vitesses de 7 et 8 m/s à Href=10m sont issus d'une extrapolation réalisée à partir des niveaux sonores mesurés aux vitesses de vent inférieures et des caractéristiques du site.


La forte dispersion des points sur le graphique est due à l'activité humaine, prépondérante en période diurne (activité agricole).

L'évolution des niveaux sonores en fonction de la vitesse du vent est cohérente et significative à partir de 4 m/s.

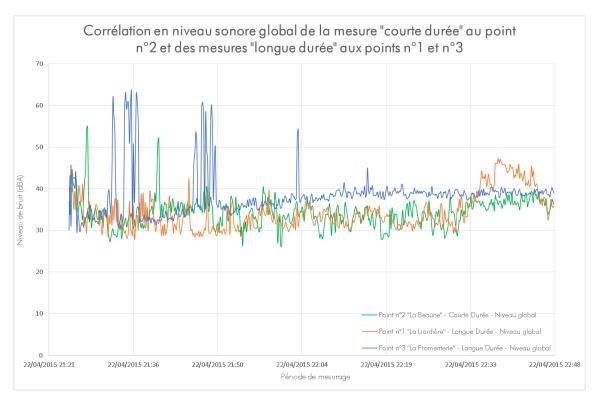
Les points verts correspondent à la période 06h-07h, durant laquelle l'activité humaine devient prépondérante dans l'environnement sonore. Cette période a été retirée de l'analyse en période nocturne.

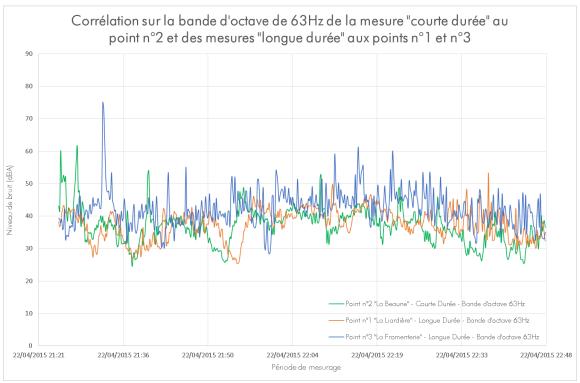
En période nocturne

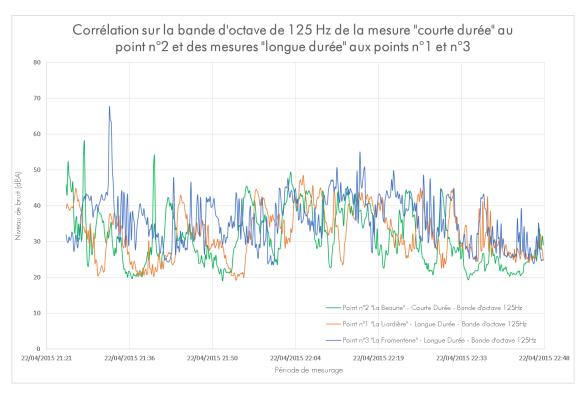
Classe de vitesse de vent standardisée à H _{ref} = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
Nombre de couples analysés	147	99	18	0	0	0
Indicateur de bruit retenu	32,5	35,5	36,5	37,0	37,5	38,0
Incertitude Uc(Res)	1,3	1,3	1,4			

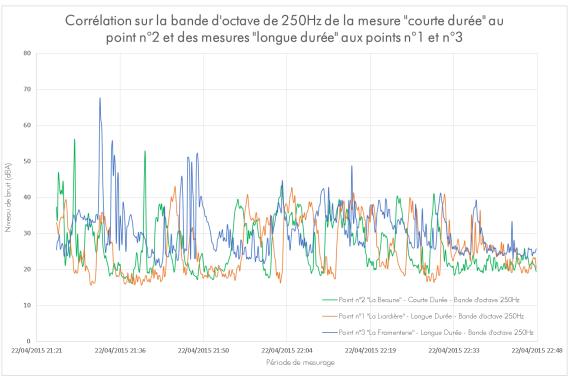
Commentaires

Les couples (L_{res}- Vitesse de vent)_{10 minutes} mesurés pour les vitesses de vent de 3 à 5 m/s à H_{ref}=10 m sont suffisants pour établir une estimation de niveaux résiduels représentatifs de la situation sonore du site. Les niveaux retenus pour les vitesses de 6, 7 et 8 m/s à Href=10m sont issus d'une extrapolation réalisée à partir des niveaux sonores mesurés aux vitesses de vent inférieures et des caractéristiques du site.

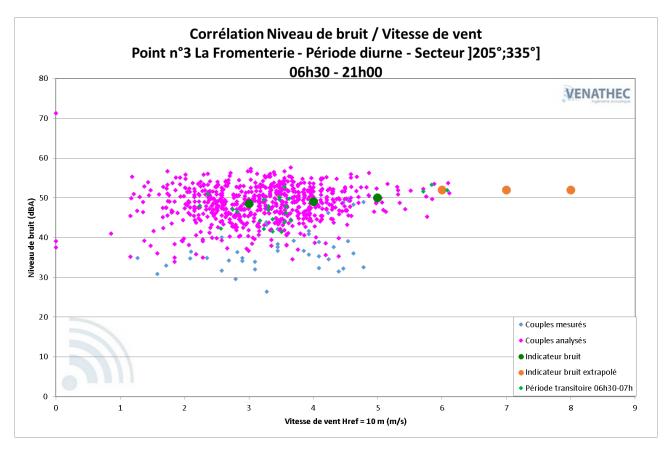

L'évolution des niveaux sonores en fonction de la vitesse du vent est relativement faible.


Les points bleus correspondent à la période 06h-07h, période durant laquelle l'activité humaine devient prépondérante, et des périodes de pluies importantes. Ils ont donc été écartés de l'analyse.


Point n°2: La Beaune


La société VALECO INGENIERIE, n'ayant pas pu contacter un riverain pour effectuer une mesure de bruit au sein d'une propriété sur le lieu-dit « La Beaune », nous avons réalisé une mesure dite « courte durée » aux abords de celle-ci, en simultané avec les autres points.

Nous présentons ci-dessous les évolutions temporelles en niveau global, et sur les bandes d'octave centrées sur 63, 125 et 250 Hz du point n°2 dit « courte durée » et des points n°1 et n°3 dits « longue durée » :

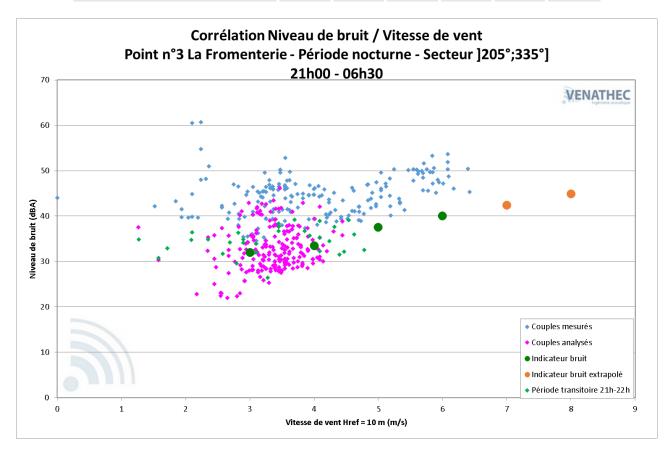

Commentaires:

L'évolution temporelle montre une bonne corrélation entre les niveaux de bruit enregistrés au point n°2 et ceux enregistrés au point n°1. Nous nous servirons par conséquent des niveaux de bruit mesurés au point n°1 afin d'évaluer les émergences sonores prévisionnelles au point n°2.

Point n°3: La Fromenterie

En période diurne

Classe de vitesse de vent standardisée à H _{ref} = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
Nombre de couples analysés	286	225	37	11	0	0
Indicateur de bruit retenu	48,5	49,0	50,0	52,0	52,0	52,0
Incertitude Uc(Res)	1,3	1,3	1,5	1,6		


Commentaires

Les commentaires sont identiques à ceux du point n°1, en termes de couples mesurés et d'extrapolation.

Les points verts correspondent à la période 06h30-07h, durant laquelle l'activité humaine devient prépondérante dans l'environnement sonore. Cette période a été retirée de l'analyse en période nocturne. Les points bleus correspondent à la période 21h-22h, période où l'activité humaine diminue. Celle-ci a été écarté de l'analyse en période diurne.

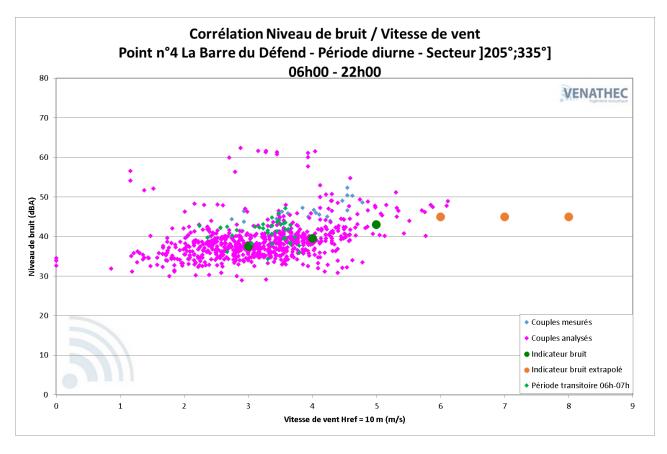
En période nocturne

Classe de vitesse de vent standardisée à H _{ref} = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
Nombre de couples analysés	127	88	3	0	0	0
Indicateur de bruit retenu	32,0	33,5	37,5	40,0	42,5	45,0
Incertitude Uc(Res)	1,4	1,4	5,6			

<u>Commentaires</u>

Les couples (L_{res}- Vitesse de vent)_{10 minutes} ont été mesurés pour les vitesses de vent de 3 et 4 m/s à H_{ref}=10 m.

Les points bleus correspondent à des périodes durant lesquelles la présence de rainettes a été constatée. Celles-ci sont surtout audibles au printemps et en été, surtout durant les périodes d'humidité. Par conséquent, le bruit engendré par celles-ci n'est pas caractéristique d'un niveau de bruit constaté en période hivernale. Par conséquent, les périodes sur lesquelles ont été constatées la présence de rainettes ont été supprimées.

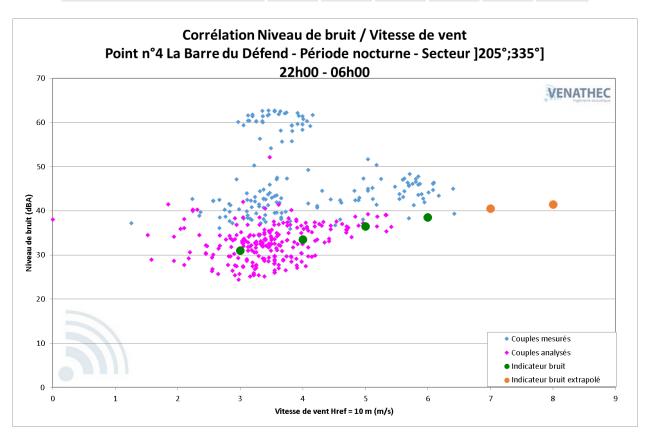

De plus, des périodes de précipitation ont également été écartées de l'analyse ainsi que la période 06h30-07h, période durant laquelle l'activité humaine s'accroît.

La période 21h-22h a, quant à elle, était intégrée dans l'analyse nocturne, cette période marquant une baisse de l'activité humaine sur la zone d'habitation.

Point n°4: La Barre du Défend

En période diurne

Classe de vitesse de vent standardisée à H _{ref} = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
Nombre de couples analysés	307	235	38	8	0	0
Indicateur de bruit retenu	37,5	39,5	43,0	45,0	45,0	45,0
Incertitude Uc(Res)	1,3	1,3	1,6	1,5		

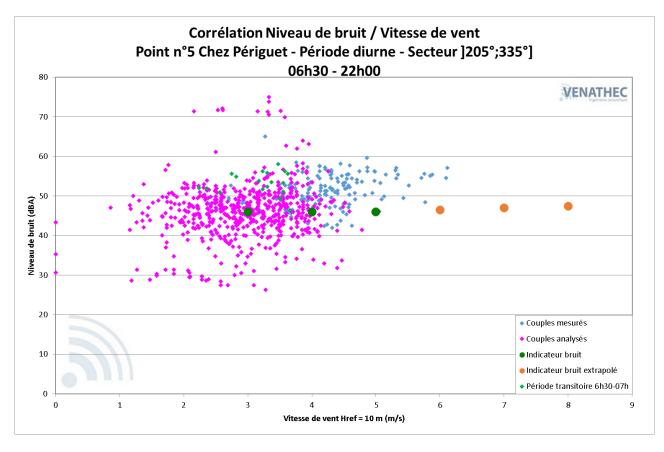


Commentaires

Les remarques sont globalement identiques à celles effectuées au point n°1.

En période nocturne

Classe de vitesse de vent standardisée à H _{ref} = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
Nombre de couples analysés	111	84	18	0	0	0
Indicateur de bruit retenu	31,0	33,5	36,5	38,5	40,5	41,5
Incertitude Uc(Res)	1,3	1,4	1,4			


Commentaires

Les remarques sont globalement identiques à celles effectuées au point n°3, en période nocturne.

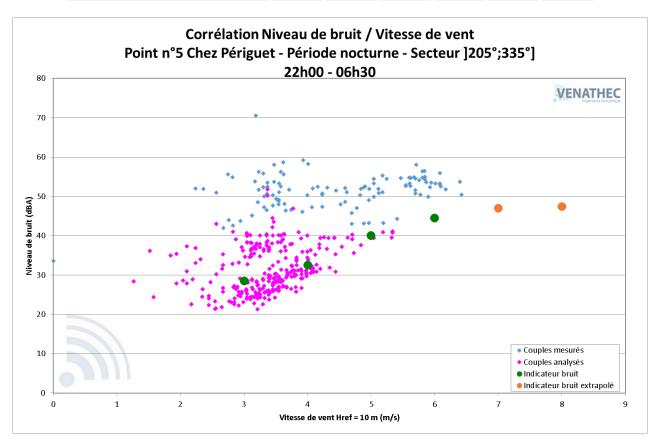
Point n°5: Chez Périquet

En période diurne

Classe de vitesse de vent standardisée à H _{ref} = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
Nombre de couples analysés	282	147	4	0	0	0
Indicateur de bruit retenu	46,0	46,0	46,0	46,5	47,0	47,5
Incertitude Uc(Res)	1,3	1,3	1,9			

Commentaires

Les couples (L_{res} – Vitesse de vent)_{10 minutes} ont été mesurés pour les vitesses de vent de 3 et 4 m/s à H_{ref} = 10 m.


Les niveaux retenus pour les vitesses de 5 à 8 m/s à Href=10m sont issus d'une extrapolation réalisée à partir des niveaux sonores mesurés aux vitesses de vent inférieures et des caractéristiques du site.

La forte dispersion des points sur le graphique est due à l'activité humaine, prépondérante en période diurne (activité agricole).

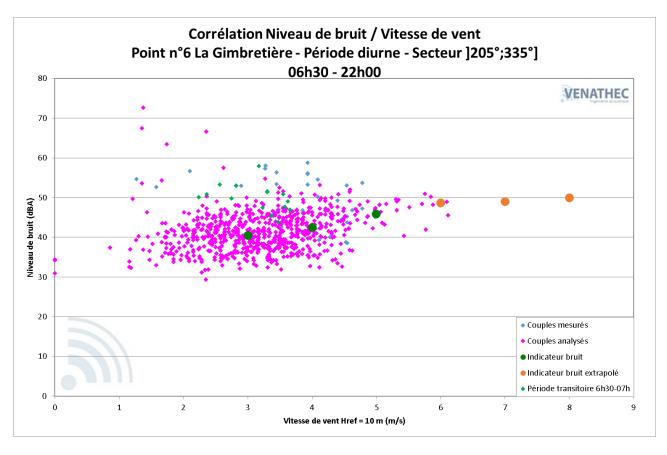
Les points bleus correspondent à des périodes de pluies importantes. Ils ont donc été écartés de l'analyse.

En période nocturne

Classe de vitesse de vent standardisée à H _{ref} = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
Nombre de couples analysés	149	104	11	0	0	0
Indicateur de bruit retenu	28,5	32,5	40,0	44,5	47,0	47,5
Incertitude Uc(Res)	1,4	1,5	1,8			

Commentaires

Les couples (L_{res} – Vitesse de vent)_{10 minutes} mesurés pour les vitesses de vent de 3 à 5 m/s à H_{ref} = 10 m sont suffisants pour établir une estimation de niveaux résiduels représentatifs de la situation sonore du site. Les niveaux retenus pour les vitesses de 6 à 8 m/s à Href=10m sont issus d'une extrapolation réalisée à partir des niveaux sonores mesurés aux vitesses de vent inférieures et des caractéristiques du site.

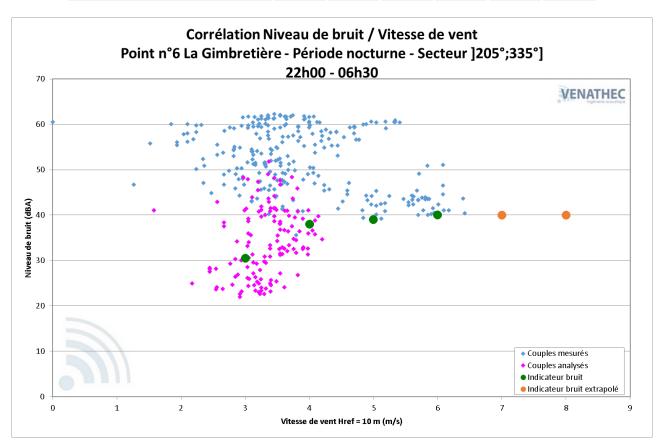

L'évolution des niveaux sonores en fonction de la vitesse du vent est cohérente et significative.

Les points bleus correspondent à la période 06h30-07h, période d'activité humaine prépondérante sur cette zone d'habitations, ainsi qu'à des périodes de pluies importantes. Ils ont donc été écartés de l'analyse.

Point n°6: La Gimbretière

En période diurne

Classe de vitesse de vent standardisée à H _{ref} = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
Nombre de couples analysés	287	218	36	8	0	0
Indicateur de bruit retenu	40,5	42,5	46,0	49,0	49,0	50,0
Incertitude Uc(Res)	1,3	1,3	1,6	1,6		

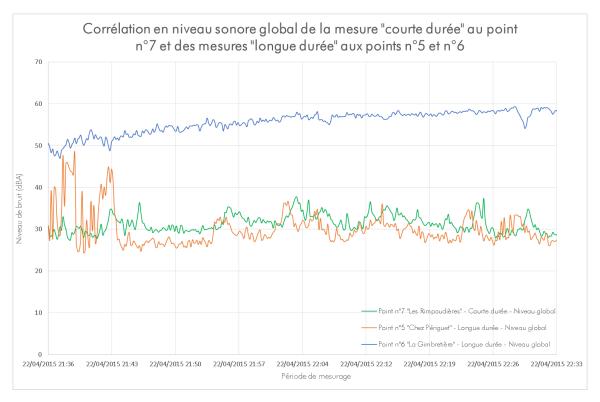


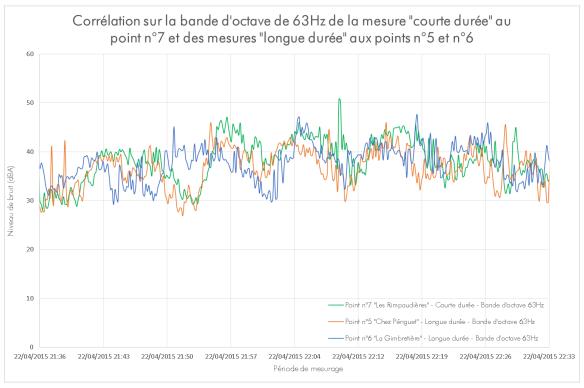
Commentaires

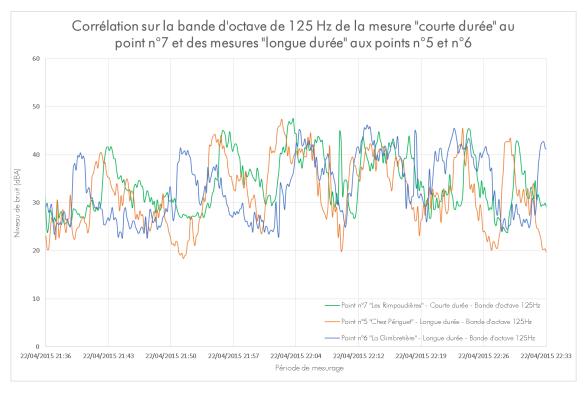
Les remarques sont globalement identiques à celles effectuées au point n°1.

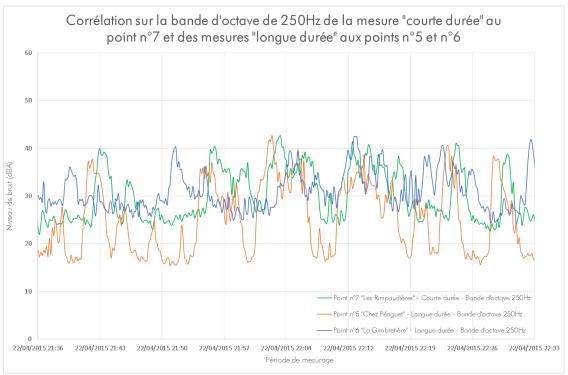
En période nocturne

Classe de vitesse de vent standardisée à H _{ref} = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
Nombre de couples analysés	82	48	0	0	0	0
Indicateur de bruit retenu	30,5	38,0	39,0	40,0	40,0	40,0
Incertitude Uc(Res)	2,0	1,8				

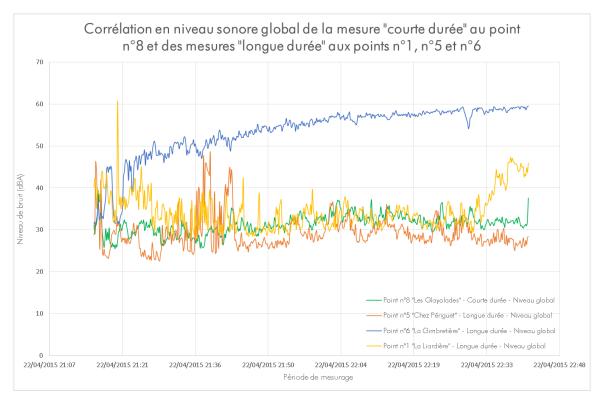

Commentaires

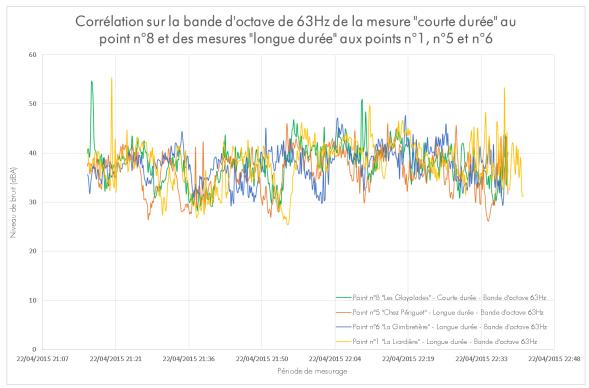

Les remarques sont globalement identiques à celles effectuées au point n°3, en période nocturne.

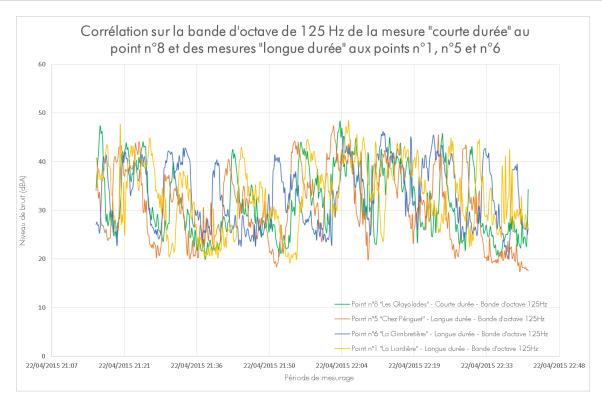

Point n°7 : Les Rimpaudières

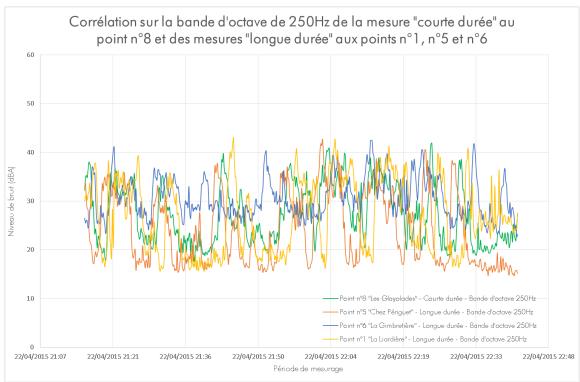

La société VALECO INGENIERIE, n'ayant pas eu l'accord du riverain pour effectuer une mesure de bruit au sein de sa propriété, nous avons réalisé une mesure dite « courte durée » aux abords de celle-ci, en simultané avec les autres points.

Nous présentons ci-dessous les évolutions temporelles en niveau global, et sur les bandes d'octave centrées sur 63, 125 et 250 Hz du point n°7 dit « courte durée » et des points n°5 et n°6 dits « longue durée » :

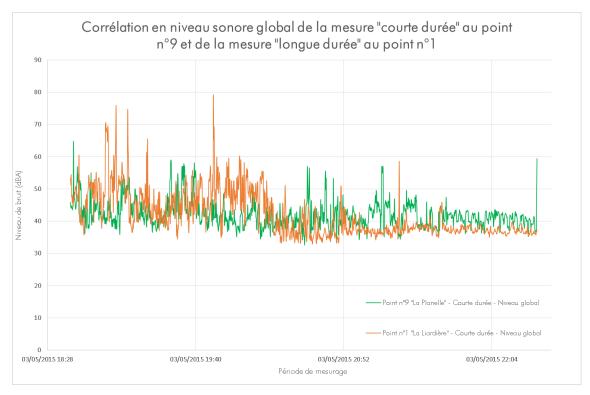

Commentaires:

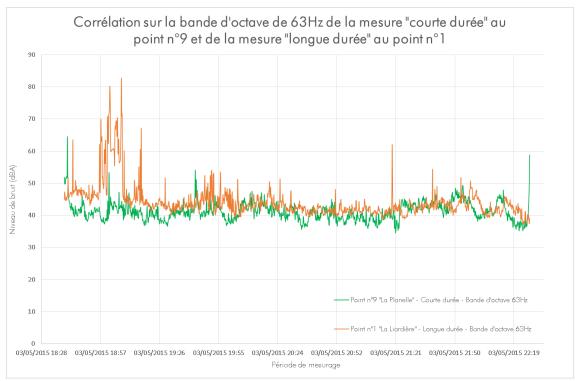

L'évolution temporelle montre une bonne corrélation entre les niveaux de bruit enregistrés au point n°7 et ceux enregistrés au point n°5. Nous nous servirons par conséquent des niveaux de bruit mesurés au point n°5, auxquels nous additionnerons 1,5 dBA, afin d'évaluer les émergences sonores prévisionnelles au point n°7.

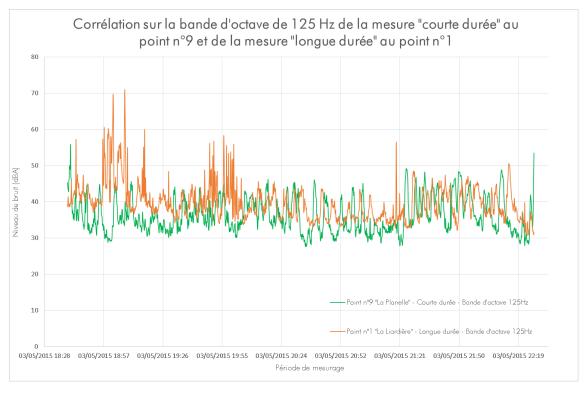

Point n°8: Les Glayolades

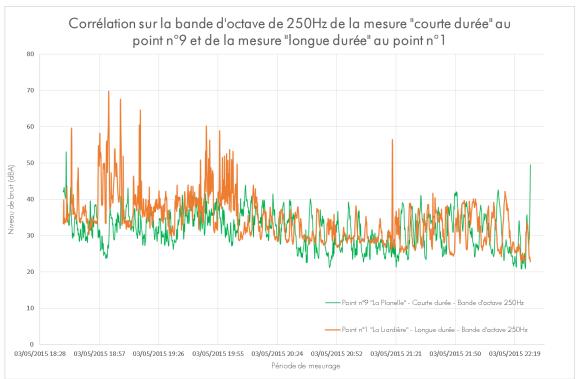

La société VALECO INGENIERIE, n'ayant pas pu contacter un riverain pour effectuer une mesure de bruit au sein d'une propriété sur le lieu-dit « Les Glayolades », nous avons réalisé une mesure dite « courte durée » aux abords de celle-ci, en simultané avec les autres points.

Nous présentons ci-dessous les évolutions temporelles en niveau global, et sur les bandes d'octave centrées sur 63, 125 et 250 Hz du point n°8 dit « courte durée » et des points n°1, n°5 et n°6 dits « longue durée » :


Commentaires:


L'évolution temporelle montre une bonne corrélation entre les niveaux de bruit enregistrés au point n°8 et ceux enregistrés au point n°1. Nous nous servirons par conséquent des niveaux de bruit mesurés au point n°1 afin d'évaluer les émergences sonores prévisionnelles au point n°8.


Point n°9: La Planelle


La société VALECO INGENIERIE, n'ayant pas pu contacter un riverain pour effectuer une mesure de bruit au sein d'une propriété sur le lieu-dit « La Planelle », nous avons réalisé une mesure dite « courte durée » aux abords de celle-ci, en simultané avec les autres points.

Nous présentons ci-dessous les évolutions temporelles en niveau global, et sur les bandes d'octave centrées sur 63, 125 et 250 Hz du point n°9 dit « courte durée » et du point n°1 dit « longue durée » :

Commentaires:

L'évolution temporelle montre une bonne corrélation entre les niveaux de bruit enregistrés au point n°9 et ceux enregistrés au point n°1. Nous nous servirons par conséquent des niveaux de bruit mesurés au point n°1, auxquels nous additionnerons 3 dBA, afin d'évaluer les émergences sonores prévisionnelles au point n°9.

6.4. Indicateurs bruit résiduel DIURNES retenus - Secteur O |205°; 335° |

Indicateurs de bruit résiduel en dBA en fonction de la vitesse de vent Secteur O :]205° ; 335°] Période DIURNE									
Point de mesure Lieu dit	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s			
Point n°1 La Liardière	46,0	47,0	50,0	54,5	55,0	55,0			
Point n°2 La Beaune	46,0	47,0	50,0	54,5	55,0	55,0			
Point n°3 La Fromenterie	48,5	49,0	50,0	52,0	52,0	52,0			
Point n°4 La Barre du Défend	37,5	39,5	43,0	45,0	45,0	45,0			
Point n°5 Chez Périguet	46,0	46,0	46,0	46,5	47,0	47,5			
Point n°6 La Gimbretière	40,5	42,5	46,0	49,0	49,0	50,0			
Point n°7 Les Rimpaudières	47,5	47,5	47,5	48,0	48,5	49,0			
Point n°8 Les Glayolades	46,0	47,0	50,0	54,5	55,0	55,0			
Point n°9 La Planelle	49,0	50,0	53,0	57,5	58,0	58,0			

Les points de mesures peuvent être consultés sur le plan de situation situé en partie 4 « Présentation du projet ». Les valeurs sont arrondies à 0,5 dBA près.

Les valeurs en italique sont issues d'une extrapolation.

Interprétations des résultats :

- Les indicateurs de bruit repris dans le tableau ci-dessus, sont issus des mesures de terrain et sont évalués sur chaque classe de vitesses de vent standardisées (à Href = 10 m) pour un secteur de directions ouest.
- Les valeurs retenues permettent une évaluation de l'ambiance sonore représentative des conditions météorologiques rencontrées.
- Les indicateurs de bruit théoriques (issus d'extrapolation ou recalage), sont affichés en italique.
- En l'absence de vitesses de vent supérieures à 4 m/s, une extrapolation a été effectuée. Les niveaux correspondants seront à considérer avec précaution.
- Ces estimations sont soumises à une incertitude de mesurage.

6.5. Indicateurs bruit résiduel NOCTURNES retenus - Secteur O [205°; 335°]

Indicateurs de bruit résiduel en dBA en fonction de la vitesse de vent Secteur O :]205° ; 335°] Période NOCTURNE									
Point de mesure Lieu dit	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s			
Point n°1 La Liardière	32,5	35,5	36,5	37,0	37,5	38,0			
Point n°2 La Beaune	32,5	35,5	36,5	37,0	37,5	38,0			
Point n°3 La Fromenterie	32,0	33,5	37,5	40,0	42,5	45,0			
Point n°4 La Barre du Défend	31,0	33,5	36,5	38,5	40,5	41,5			
Point n°5 Chez Périguet	28,5	32,5	40,0	44,5	47,0	47,5			
Point n°6 La Gimbretière	30,5	38,0	39,0	40,0	40,0	40,0			
Point n°7 Les Rimpaudières	30,0	34,0	41,5	46,0	48,5	49,0			
Point n°8 Les Glayolades	32,5	35,5	36,5	37,0	37,5	38,0			
Point n°9 La Planelle	35,5	38,5	39,5	40,0	40,5	41,0			

Les points de mesures peuvent être consultés sur le plan de situation situé en partie 4 « Présentation du projet ». Les valeurs sont arrondies à 0,5 dBA près.

Les valeurs en italique sont issues d'une extrapolation.

Interprétations des résultats :

- Les indicateurs de bruit repris dans le tableau ci-dessus, sont issus des mesures de terrain et sont évalués sur chaque classe de vitesses de vent standardisées (à Href = 10 m) pour un secteur de directions ouest.
- Les valeurs retenues permettent une évaluation de l'ambiance sonore représentative des conditions météorologiques rencontrées.
- Les indicateurs de bruit théoriques (issus d'extrapolation ou recalage), sont affichés en italique.
- En l'absence de vitesses de vent supérieures à 4 m/s, une extrapolation a été effectuée. Les niveaux correspondants seront à considérer avec précaution.
- Ces estimations sont soumises à une incertitude de mesurage.

7. CONCLUSION SUR LA PHASE DE MESURAGE

Nous avons effectué des mesures de niveaux résiduels en cinq lieux distincts sur une période de 12 jours, pour des vitesses de vent comprises entre 0 et 6 m/s à H_{ref} = 10 m, afin de qualifier l'état initial acoustique du site des Gassouillis (87).

En complément, afin de permettre une étude la plus complète possible, des mesures dites « courte durée » ont été effectuée aux emplacements n°2, n°7, n°8 et n°9, où les riverains ne souhaitaient pas accueillir un sonomètre dans leur propriété ou n'ont pu être contactés. Ces mesures ont été corrélées avec les mesures « longue durée » réalisées en simultané.

La campagne de mesure a permis une évaluation des niveaux de bruit en fonction de la vitesse de vent satisfaisante, conformément aux recommandations du projet de norme Pr NFS 31-114, sur les plages de vitesses de vent comprises entre 3 et 8 m/s sur deux classe homogène de bruit :

- Classe homogène 1 : Secteur [205°; 335°] O en période diurne printanière de 7h à 22h;
- Classe homogène 2 : Secteur [205°; 335°] O en période nocturne printanière de 22h à 7h.

Compte tenu des incertitudes des mesurages calculées, les indicateurs de bruit présentant plus de 10 échantillons semblent relativement pertinents.

Une extrapolation ou un recalage des indicateurs de bruit a été réalisé sur les vitesses de vent non rencontrées pendant la campagne de mesure (ou présentant peu d'occurrence), en fonction des niveaux sonores mesurés aux vitesses de vent inférieures et des caractéristiques du site, et prennent en considération une évolution théorique des niveaux sonores avec la vitesse de vent. Les valeurs correspondantes seront à considérer avec précaution.

Selon notre retour d'expérience, grâce notamment aux réceptions de parcs après implantation des éoliennes, les vitesses de vent où nous remarquons les plus souvent des dépassements d'émergence réglementaire, sont souvent comprises entre 4 et 7 m/s à H_{ref} = 10m. Ceci s'explique notamment en raison d'une ambiance faible à ces vitesses alors que le bruit des éoliennes s'intensifie.

Les vitesses de vent mesurées lors de la présente campagne sont donc jugées satisfaisantes entre 3 et 6 m/s en période diurne et 3 et 5 m/s en période nocturne.

Les relevés ont été effectués au printemps, saison où la végétation commence à se développer et l'activité humaine à l'extérieur s'accroit.

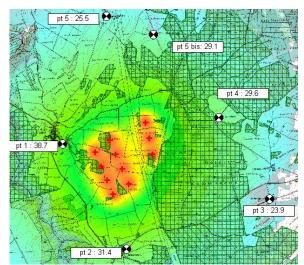
En raison d'une végétation abondante et d'une activité humaine accrue, en saison estivale les niveaux résiduels seraient probablement un peu plus élevés, à l'inverse en saison hivernale, les niveaux résiduels seraient relativement plus faibles. Le choix de l'emplacement des points de mesures est néanmoins réalisé en se protégeant au mieux de la végétation environnante de manière à s'affranchir au maximum de son influence. Ainsi, cette campagne de mesure effectuée en période printanière est représentative de l'environnement sonore sur le site.

8. ÉTUDE DE L'IMPACT ACOUSTIQUE ENGENDRÉ PAR L'ACTIVITÉ DU PARC ÉOLIEN

8.1. Rappel des objectifs

Le but étant d'évaluer l'impact sonore engendré par l'activité du parc éolien, nous devons effectuer une estimation des niveaux particuliers (bruit des éoliennes uniquement) aux abords des habitations les plus exposées.

Le bruit particulier sera calculé à l'aide d'un logiciel de prévision acoustique : CadnaA.


CadnaA est un logiciel de propagation environnementale, outil de calculs de l'acoustique prévisionnelle, basé sur des modélisations des sources et des sites de propagation, et est destiné à décrire quantitativement des répartitions sonores pour des classes de situations données.

Le calcul d'émergence est réalisé selon la norme ISO 9613-1/2, et prend en compte des **conditions favorables de propagation** dans toutes les directions de vent.

Notre retour d'expérience, et notamment notre travail relatif aux études post-implantation des éoliennes, nous ont permis de nous conforter dans les paramètres et codes de calculs utilisés et ainsi de fiabiliser nos estimations.

Néanmoins, compte tenu des incertitudes liées aux mesurages et aux simulations numériques, il n'est pas possible de conclure de manière catégorique sur la conformité de l'installation.

L'objectif de l'étude d'impact acoustique prévisionnel consiste, par conséquent, à qualifier et quantifier le risque potentiel de non-respect des critères réglementaires du projet.

Exemple: CadnaA - Cartographie sonore

La conformité acoustique du site devra ensuite être validée, une fois la mise en fonctionnement des aérogénérateurs sur le site, par la réalisation de mesures de bruit respectant la norme de mesurage NFS 31-114 « Acoustique - Mesurage du bruit dans l'environnement avec et sans activité éolienne ».

Pour chaque zone d'habitations ayant fait l'objet de mesurage un point de calcul sera positionné au niveau de la façade la plus exposée au parc éolien.

8.2. Description des éoliennes

L'impact acoustique d'une éolienne a deux origines : le bruit mécanique et le bruit aérodynamique. Le bruit mécanique a progressivement été réduit grâce à des systèmes d'insonorisation performants. Le problème reste donc d'ordre aérodynamique (vent dans les pales et passage des pales devant le mât).

Le niveau de puissance acoustique (L_{wA}) d'une éolienne est fonction de la vitesse du vent sur ses pales. Les caractéristiques acoustiques de l'éolienne de type GAMESA G114 (125 m de hauteur de moyeu et d'une puissance de 2 MW) sont reprises dans le tableau suivant :

G114 - 2,0 MW - HH=125m								
Vitesse de vent à H _{ref} =10 m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s
L _{wA} en dBA	94,4	96,6	101,6	104,6	104,6	104,6	104,6	104,6

Ces données sont issues du document GD193033-EN-R3 du 17 juin 2015, établi par la société GAMESA. Les mesures ont été réalisées pour des machines dont la puissance nominale est de 2 MW. Afin de prendre en compte l'incertitude concernant les valeurs données par le constructeur, les calculs ont été développés avec l'ajout de 2 dBA sur les valeurs garanties, conformément à ce qui est conseillé par GAMESA.

8.3. Hypothèses de calcul

Le calcul des niveaux de pression acoustique de l'installation a tenu compte des différents points suivants :

- Topographie du terrain;
- Implantation du bâti pouvant jouer un rôle dans les réflexions;
- Direction du vent ;
- Puissance acoustique de chaque éolienne.

Paramètres de calcul:

- Absorption au sol: 0,68, correspondant à une zone non urbaine (champ, surface labourée...);
- Température de 10°C;
- Humidité relative 70%.

Le calcul prend en compte le fonctionnement simultané de l'ensemble des éoliennes du parc, considérant une vitesse et direction de vent identiques en chaque mât (aucune perte de sillage).

Evaluation de l'impact sonore

Rappel de la réglementation

Niveau ambiant existant	Emergence maximale admissible						
incluant le bruit de l'installation	Jour (7h / 22 h)	Nuit (22h / 7h)					
Lamb≤ 35 dBA	/	/					
Lamb > 35 dBA	E ≤ 5 dBA	E ≤ 3 dBA					

L'association des niveaux particuliers calculés avec les niveaux sonores résiduels retenus précédemment permet ensuite d'estimer le niveau de bruit ambiant prévisionnel dans les zones à émergence réglementée et ainsi de quantifier l'émergence :

Niveau résiduel retenu	Mesures de terrain – Indicateur bruit	L_{res}
Niveau particulier des éoliennes	Evaluation de la contribution sonore des éoliennes à l'aide du logiciel CadnaA	L _{part}
Niveau ambiant prévisionnel	$= 10 \log (10^{(Lres/10)} + 10^{(Lpart/10)})$	L _{amb}
Emergence prévisionnelle	$E = L_{amb} - L_{res}$	Е

Le dépassement prévisionnel est ensuite défini comme étant l'objectif de diminution de l'impact sonore permettant de respecter les seuils réglementaires (= excédant par rapport au seuil de déclenchement sur le niveau ambiant ou à la valeur limite d'émergence).

Dépassement vis-à-vis du seuil de niveau ambiant déclenchant le critère d'émergence (C_A)	$= Lamb-C_A$	D _A
Dépassement vis-à-vis de la valeur limite d'émergence (Emax)	= E-Emax	De
Dépassement retenu (D)	= minimum(D _A ;De)	D

Présentation des résultats :

Les tableaux ci-dessous reprennent les niveaux de bruit ambiant et les émergences prévisionnels calculés aux emplacements les plus assujettis aux émissions sonores du parc.

Ces niveaux sont comparés aux seuils réglementaires pour en déduire le <u>dépassement</u> en chaque point de mesure tel que défini précédemment.

Le risque de non-conformité est évalué en période diurne puis en période nocturne.

Résultats prévisionnels en période diurne 8.5.

Echelle de risque utilisée :

Aucun dépassement

0,0 < Dépassement ≤ 1,0 dBA 1,0 < Dépassement ≤ 3,0 dBA

Dépassement > 3,0 dBA

RISQUE FAIBLE RISQUE MODÉRÉ RISQUE PROBABLE RISQUE TRES PROBABLE

- Seuil d'application du critère d'émergence : C_A =35 dBA
- Emergence limite réglementaire de jour : Emax=5 dBA

lm	pact prévis	sionnel po	ar classe	de vitess	e de vent	- Période	e diurne	
Vitesses de standardisé Href=10	es à	3ms	4ms	5ms	6ms	7ms	8ms	Risque
	Lamb	46,0	47,0	50,5	55,0	55,0	55,0	
Point 1	Е	0,0	0,0	0,5	0,5	0,0	0,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	46,0	47,0	50,0	54,5	55,0	55,0	
Point 2	Е	0,0	0,0	0,0	0,0	0,0	0,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	48,5	49,0	50,5	52,5	52,5	52,5	
Point 3	Е	0,0	0,0	0,5	0,5	0,5	0,5	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	39,0	41,0	45,0	47,5	47,5	47,5	FAIBLE
Point 4	Е	1,5	1,5	2,0	2,5	2,5	2,5	
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	46,0	46,5	47,0	48,0	48,0	48,5	
Point 5	Е	0,0	0,5	1,0	1,5	1,0	1,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	40,5	42,5	46,0	49,0	49,0	50,0	
Point 6	Е	0,0	0,0	0,0	0,0	0,0	0,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	47,5	47,5	48,0	48,5	49,0	49,5	
Point 7	Е	0,0	0,0	0,5	0,5	0,5	0,5	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	46,0	47,5	50,5	55,0	55,5	55,5	
Point 8	Е	0,0	0,5	0,5	0,5	0,5	0,5	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	49,0	50,0	53,0	57,5	58,0	58,0	
Point 9	Е	0,0	0,0	0,0	0,0	0,0	0,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	

<u>Interprétations des résultats pour la période diurne :</u>

Aucun dépassement des seuils réglementaires n'est estimé au niveau des autres zones d'habitations étudiées.

8.6. Résultats prévisionnels en période nocturne

Echelle de risque utilisée :

Aucun dépassement

0,0 < Dépassement ≤ 1,0 dBA 1,0 < Dépassement ≤ 3,0 dBA

Dépassement > 3,0 dBA

RISQUE FAIBLE RISQUE MODERE RISQUE PROBABLE RISQUE TRES PROBABLE

- Seuil d'application du critère d'émergence : $C_A = 35 dBA$
- Emergence limite réglementaire de nuit : Emax=3 dBA

	Impact	prévision	nel par c	lasse de	vitesse de	e vent - P	ériode no	octurne	
Vitesses de standardis Href=1	sées à	3ms	4ms	5ms	6ms	7ms	8ms	Risque	
	Lamb	35,5	38,0	41,5	43,5	43,5	44,0		
Point 1	Е	3,0	2,5	5,0	6,5	6,0	6,0	TRES PROBABLE	
	D	0,0	0,0	1,8	3,6	3,2	2,8		
	Lamb	34,5	37,5	40,0	42,0	42,5	42,5		
Point 2	Е	2,0	2,0	3,5	5,0	5,0	4,5	PROBABLE	
	D	0,0	0,0	0,7	2,2	1,9	1,6		
	Lamb	35,0	36,5	41,0	44,0	45,0	46,5		
Point 3	Е	3,0	3,0	3,5	4,0	2,5	1,5		
	D	0,0	0,2	0,7	1,0	0,0	0,0		
	Lamb	35,5	37,5	42,0	44,5	45,5	45,5		
Point 4	Е	4,5	4,0	5,5	6,0	5,0	4,0	TRES PROBABLE	
	D	0,3	1,1	2,5	3,2	1,8	1,1		
	Lamb	33,5	36,5	42,5	46,5	48,0	48,5		
Point 5	Е	5,0	4,0	2,5	2,0	1,0	1,0		
	D	0,0	0,8	0,0	0,0	0,0	0,0		
	Lamb	32,0	38,5	40,0	41,5	41,5	41,5		
Point 6	Е	1,5	0,5	1,0	1,5	1,5	1,5	FAIBLE	
	D	0,0	0,0	0,0	0,0	0,0	0,0		
	Lamb	33,0	36,5	43,0	47,0	49,0	49,5		
Point 7	Е	3,0	2,5	1,5	1,0	0,5	0,5	FAIBLE	
	D	0,0	0,0	0,0	0,0	0,0	0,0		
	Lamb	36,0	38,5	42,0	44,0	44,5	44,5		
Point 8	Е	3,5	3,0	5,5	7,0	7,0	6,5	TRES PROBABLE	
	D	0,3	0,0	2,3	4,2	3,8	3,4		
	Lamb	36,0	39,0	40,5	42,0	42,0	42,5		
Point 9	Е	0,5	0,5	1,0	2,0	1,5	1,5	FAIBLE	
	D	0,0	0,0	0,0	0,0	0,0	0,0		

Interprétations des résultats pour la période nocturne :

Selon nos estimations et hypothèses retenues, des dépassements des seuils réglementaires nocturnes sont relevés sur les neuf zones d'habitations :

- Point n°1 : La Liardière ;
- Point n°2 : La Beaune ;
- Point n°3: La Fromenterie;
- Point n°4 : La Barre du Défend ;
- Point n°5 : Chez Périguet ;
- Point n°8: Les Glayolades.

Les points n°1, n°4 et n°8 présentent des dépassements des seuils réglementaires sur les vitesses de 3 à 8 m/s à H= 10m. Ces dépassements sont de l'ordre de 0,3 à 4,2 dBA. Le risque acoustique sur ces points est considéré comme très probable.

Au point n°2 des dépassements des seuils réglementaires sont relevés pour des vitesses comprises entre 5 et 8 m/s. Ces dépassements sont de l'ordre de 0,7 à 2,2 dBA. Le risque acoustique sur ce point est considéré comme probable.

Les points n°3 et n°5 présentent des dépassements des seuils réglementaires sur les vitesses de 4 à 6 m/s à H= 10m. Ces dépassements sont de l'ordre de 0,2 à 1,0 dBA. Le risque acoustique sur ces points est considéré comme modéré.

9. **OPTIMISATION DU PROJET**

9.1. Comment réduire le bruit de l'éolienne : le bridage

Différents modes de bridage

Le résultat des simulations acoustiques conclut à un risque de dépassement des émergences réglementaires. Un plan d'optimisation ou plan de bridage va donc être proposé, dans différentes directions de vent privilégiées et en fonction de la vitesse du vent.

Ce plan de bridage est élaboré à partir de plusieurs modes de bridage permettant une certaine souplesse et limitant ainsi la perte de production. Ils correspondent à des ralentissements graduels de la vitesse de rotation du rotor de l'éolienne permettant de réduire la puissance sonore des éoliennes.

De même, plus le bridage est important, plus la perte de production augmente.

G114 - 2,0 MW – HH=125m										
Vitesse de vent à H _{ref} =10 m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s		
L _{wA} en dBA – Pleine puissance	94,4	96,6	101,6	104,6	104,6	104,6	104,6	104,6		
L _{wA} en dBA - NRS A	94,4	95,1	100,1	104,3	104,6	104,6	104,6	104,6		
L _{wA} en dBA – NRS B	94,4	94,4	99,3	103,5	104,6	104,6	104,6	104,6		
L _{wA} en dBA – NRS C	94,4	94,4	98,2	102,5	104,6	104,6	104,6	104,6		
L _{wA} en dBA – N6	94,4	96,7	98,0	98,0	98,0	98,0	98,0	98,0		

Ces données sont issues des documents n° GD193033-EN-R3 et n° GD193034-EN-R2 du du 17 juin 2015, établis par la société GAMESA. Elles sont réalisées conformément aux normes IEC 61400-11. Ces mesures ont été réalisées pour des machines dont la puissance nominale est de 2,0 MW.

Les calculs ont été effectués en prenant en compte 2 dBA d'incertitude supplémentaire sur les valeurs garanties, conformément à ce qui est conseillé par le constructeur.

Mise en œuvre du bridage

Les plans d'optimisation proposés ci-dessous permettent de prévoir un plan de fonctionnement du parc respectant les contraintes acoustiques réglementaires après la mise en exploitation des machines. Pour confirmer et affiner ces calculs, il sera nécessaire de réaliser une campagne de mesure de réception en phase de fonctionnement des éoliennes. En fonction des résultats de cette mesure de réception, les plans de bridages pourront être allégés ou renforcés (un arrêt complet de l'éolienne étant envisageable en cas de dépassement des seuils réglementaires avérés) afin de respecter la réglementation en vigueur.

Ce plan de bridage est mis en œuvre grâce au logiciel de contrôle à distance de l'éolienne via le SCADA. A partir du moment où l'éolienne enregistrera, par l'anémomètre (vitesse du vent) et la girouette (direction du vent) situés en haut de la nacelle, des données de vent « sous contraintes » et en fonction des périodes horaires (diurne : 7h-22h ou nocturne 22h-7h), le mode de bridage programmé se mettra en œuvre.

Concrètement, la vitesse de rotation du rotor est réduite par une réorientation des pales, via le pitch (système d'orientation des pales se trouvant au niveau du hub ou nez de l'éolienne) afin de limiter leur prise au vent en jouant sur le profil aérodynamique de la pale. Les modes de bridage correspondent donc à une inclinaison plus ou moins importante des pales.

L'intérêt de cette technique est qu'elle permet de ne pas utiliser de frein, qui pourrait lui aussi produire une émission sonore et augmenter l'usure des parties mécaniques. En cas d'arrêt programmé de l'éolienne dans le cadre du plan de bridage, les pales seront mises « en drapeau » de la même manière, afin d'annuler la prise au vent des pales et donc empêcher la rotation du rotor.

Aucune contrainte d'application des modes bridés n'est considérée.

9.2. Plan de fonctionnement - Période diurne

Plan d'arrêts et de bridages des machines en période diurne								
Vitesse de vent standardisée H ref = 10m	3 m/s 4 m/s 5 m/s 6 m/s 7 m/s 8 m/s							
Eol n°1	Pleine puissance							
Eol n°2	Pleine puissance							
Eol n°3			Pleine p	uissance				
Eol n°4	Pleine puissance							
Eol n°5	Pleine puissance							
Eol n°6	Pleine puissance							
Eol n°7	Pleine puissance							

Interprétation des résultats

Quelle que soit la direction de vent, les hypothèses de calcul ne mettent pas en avant de dépassement des seuils réglementaires en période diurne.

En conséquence, un fonctionnement normal de l'ensemble des éoliennes est prévu sur cette période.

9.3. Plan de fonctionnement - Période nocturne

En période nocturne, la configuration actuelle à 7 aérogénérateurs présente un risque de dépassement des seuils réglementaires sur certaines zones d'habitations environnant le site.

Une optimisation du plan de fonctionnement des machines a par conséquent été effectuée afin de maîtriser ce risque et ne dépasser le niveau d'émergence acceptable en aucune vitesse de vent.

Les calculs entrepris tiennent compte d'une direction de vent spécifique, c'est pourquoi nous réalisons un plan d'optimisation du fonctionnement pour chacune des deux directions dominantes du site.

En l'absence de direction de vent nord-est lors des mesurages de niveaux résiduels, le plan de fonctionnement correspondant sera réalisé à partir des niveaux relevés (direction ouest).

Par commodité, les niveaux relevés en direction ouest seront assimilés à l'étude en direction sud-ouest. L'ambiance sonore étant fonction de la direction du vent, cette hypothèse nécessaire aux calculs, donne lieu à une incertitude supplémentaire. Le plan correspondant devra donc être considéré avec précaution.

Nous avons utilisé, via le logiciel CadnaA, deux types de code de calculs : ISO 96-13 et HARMONOISE, le dernier prenant mieux en compte les effets météorologiques liés à la propagation du son à grande distance, notamment en conditions de vent non portantes.

Les plans de fonctionnement présentés sont des plans prévisionnels, ils sont issus de calculs soumis à des incertitudes sur le mesurage et sur la modélisation, et devront être validés ou infirmés lors de mesures de réception sur site qui, elles seules, permettront de déterminer le/les plan(s) d'optimisation à mettre en œuvre selon les plages de vitesse et les directions de vent.

Plan de fonctionnement en période nocturne en direction sud-ouest

Plan d'arrêts et de bridages des machines en période nocturne - Optimisation SO								
Vitesse de vent standardisée H ref = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s		
Eol n°1	Pleine puissand	Pleine puissance NRS C N6				N6		
Eol n°2	Pleine puissand	NRS A		N6				
Eol n°3	Pleine puissand	ce	N6					
Eol n°4	Pleine puissance	NRS A		N6		Pleine puissance		
Eol n°5	Pleine puissance	NRS A	NRS	S C	Pleine puissance			
Eol n°6	Pleine puissance	NRS A	NRS C	N6	Pleine puissance			
Eol n°7	Pleine puissance	NRS B			N6			

Plan de fonctionnement en période nocturne en direction nord-est

Plan d'arrêts et de bridages des machines en période nocturne - Optimisation NE								
Vitesse de vent standardisée H ref = 10m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s		
Eol n°1	Pleine p	NRS A	N6					
Eol n°2	Pleine p	NRS C	N6					
Eol n°3	Arrêt	Pleine puissance	N6					
Eol n°4	Pleine puissance	NRS B	Ν	6	Pl	eine puissance		
Eol n°5	Pleine puissance	NRS A	NRS C	NRS B	NRS B N6 Pleine puissanc			
Eol n°6	Pleine puissance	NRS A	NRS C	N6				
Eol n°7	Pleine puissance	NRS B		N6				

L'arrêt présent sur l'éolienne 3 à 3 m/s vient du fait que les modes de bridage ne proposent pas un niveau acoustique inférieur au mode 'pleine puissance' à la vitesse de vent de 3 m/s, selon les documents de GAMESA.

Ces plans de bridage sont à titre indicatif et seront validés lors de mesures acoustiques après installation du parc dans le but de respecter la réglementation en vigueur.

Evaluation de l'impact sonore en période nocturne après optimisation en direction sud-9.4.

Les niveaux résiduels sont issus de mesures en direction de vent ouest, seule une campagne de mesure en direction sud-ouest permettrait d'évaluer les niveaux correspondants.

<u>Période nocturne – Niveaux sonores après optimisation – Direction sud-ouest :</u>

Niveaux sonores après optimisation – Sud-ouest								
Vitesses de standardisé Href=10	es à	3ms	4ms	5ms	6ms	7ms	8ms	Risque
	Lamb	35,5	38,0	39,5	40,0	40,0	41,0	
Point 1	Е	3,0	2,5	3,0	3,0	2,5	3,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	34,5	37,0	38,5	39,0	40,0	41,0	
Point 2	Е	2,0	1,5	2,0	2,0	2,5	3,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	35,0	36,0	39,5	41,5	44,0	46,5	
Point 3	Е	3,0	2,5	2,0	1,5	1,5	1,5	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	35,0	36,5	39,5	41,5	43,5	44,5	
Point 4	Е	4,0	3,0	3,0	3,0	3,0	3,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	33,5	35,5	41,5	45,0	47,5	48,0	
Point 5	Е	5,0	3,0	1,5	0,5	0,5	0,5	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	32,0	38,5	39,5	40,5	40,5	41,0	
Point 6	Е	1,5	0,5	0,5	0,5	0,5	1,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	33,0	36,0	42,0	46,5	48,5	49,0	
Point 7	Е	3,0	2,0	0,5	0,5	0,0	0,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	35,5	38,0	39,5	40,0	40,5	41,0	
Point 8	Е	3,0	2,5	3,0	3,0	3,0	3,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	36,0	39,0	40,0	40,5	40,5	41,0	
Point 9	Е	0,5	0,5	0,5	0,5	0,0	0,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	

Interprétation des résultats

Selon nos estimations et hypothèses retenues, le plan d'optimisation de fonctionnement déterminé permettra de respecter les seuils réglementaires nocturnes et n'engendrera plus de dépassement.

9.5. Evaluation de l'impact sonore en période nocturne après optimisation en direction nord-

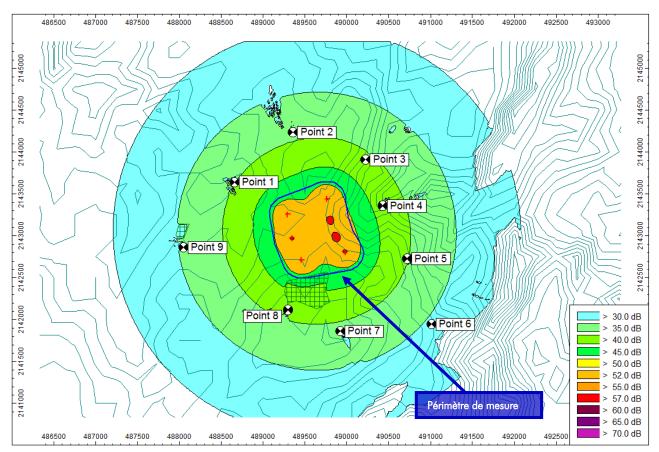
Les niveaux résiduels sont issus de mesures en direction de vent ouest, seule une campagne de mesure en direction nord-est permettrait d'évaluer les niveaux correspondants.

<u>Période nocturne – Niveaux sonores après optimisation – Direction nord-est :</u>

	Nive	eaux son	ores aprè	s optimis	ation — N	lord-est		
Vitesses de standardisé Href=10	es à	3ms	4ms	5ms	6ms	7ms	8ms	Risque
	Lamb	35,0	38,0	39,5	40,0	40,5	41,0	
Point 1	Е	2,5	2,5	3,0	3,0	3,0	3,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	34,5	37,0	38,5	39,0	40,0	40,5	
Point 2	Е	2,0	1,5	2,0	2,0	2,5	2,5	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	34,5	36,0	39,5	41,5	43,5	46,0	
Point 3	Е	2,5	2,5	2,0	1,5	1,0	1,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	35,0	36,5	39,5	41,5	43,0	44,0	
Point 4	Е	4,0	3,0	3,0	3,0	2,5	2,5	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	33,0	35,5	41,0	45,0	47,5	48,0	
Point 5	Е	4,5	3,0	1,0	0,5	0,5	0,5	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	31,5	38,5	39,5	40,5	40,5	40,5	
Point 6	Е	1,0	0,5	0,5	0,5	0,5	0,5	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	32,5	36,0	42,0	46,5	48,5	49,0	
Point 7	Е	2,5	2,0	0,5	0,5	0,0	0,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	35,0	38,0	39,5	40,0	40,5	41,0	
Point 8	Е	2,5	2,5	3,0	3,0	3,0	3,0	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	
	Lamb	36,0	39,0	40,0	40,5	41,0	41,5	
Point 9	Е	0,5	0,5	0,5	0,5	0,5	0,5	FAIBLE
	D	0,0	0,0	0,0	0,0	0,0	0,0	

Interprétation des résultats

Selon nos estimations et hypothèses retenues, le plan d'optimisation de fonctionnement déterminé permettra de respecter les seuils réglementaires nocturnes et n'engendrera plus de dépassement.


10. NIVEAUX DE BRUIT SUR LE PERIMETRE DE L'INSTALLATION

L'arrêté du 26 août 2011 impose un niveau de bruit à ne pas dépasser sur le périmètre de l'installation, en périodes diurne (70 dBA) et nocturne (60 dBA).

<u>Périmètre de mesure</u> : « Périmètre correspondant au plus petit polygone dans lequel sont inscrits les disques de centre chaque aérogénérateur et de rayon R défini comme suit : »

$$R = 1.2 \text{ x}$$
 (Hauteur de moyeu + Longueur d'un demi-rotor) soit $R = 1.2 \text{ x}$ (125+57) = 218,4 mètres

Des simulations numériques ont permis une estimation du niveau de bruit généré dans l'environnement proche des éoliennes et permettent de comparer aux seuils réglementaires fixés sur le périmètre de mesure (considérant une distance de 218,4m avec chaque éolienne). Ce calcul est entrepris sur la plage de fonction jugée la plus critique (à pleine puissance de la machine), correspondant en l'occurrence à une vitesse de vent de 8 m/s. La cartographie des répartitions de niveaux sonores présentées ci-dessous est réalisée à 2m du sol. Le périmètre de mesure est indiqué à l'aide du polygone bleu.

Carte sonore prévisionnelle des niveaux de bruit en limites de propriété du parc éolien

Commentaires:

Les niveaux de bruit calculés sur le périmètre de mesure ne révèlent aucun dépassement des seuils réglementaires définis par l'arrêté du 26 août 2011 (70 dBA en période diurne, 60 dBA en période nocturne).

En effet les niveaux sont globalement estimés à 55 dBA, ainsi même en ajoutant une contribution de l'environnement sonore indépendant des éoliennes (supposant que son impact ne soit pas supérieur à celui des machines) les niveaux seraient d'environ 58 dBA et donc inférieurs au seuil le plus restrictif.

11. TONALITE MARQUEE

Une analyse du critère de tonalité est effectuée à partir des documents fournis par la société GAMESA pour la machines de type G114 de chez Gamesa d'une hauteur de moyeu de 125 mètres. Cette analyse est réalisée pour la vitesse de vent de 7 m/s (à Href=10m) et permet d'étudier les

composantes fréquentielles des émissions sonores de machines et ainsi de les comparer aux critères réglementaires jugeant de la présence ou non d'un bruit à tonalité marquée.

Classe de vent stand	vitesse de ardisée	7 m/s		
f (Hz)	Limite ICPE (dB)	Lw (dB)	TONALITE	
31,5				
40				
50	10	101,6	NON	
63	10	100,1	NON	
80	10	98,9	NON	
100	10	98,0	NON	
125	10	97,2	NON	
160	10	96,7	NON	
200	10	96,2	NON	
250	10	95,6	NON	
315	10	94,9	NON	
400	5	94,3	NON	
500	5	93,3	NON	
630	5	92,6	NON	
800	5	91,5	NON	
1000	5	90,2	NON	
1250	5	88,6	NON	
1600	5	86,7	NON	
2000	5	85,0	NON	
2500	5	83,3	NON	
3150	5	81,5	NON	
4000	5	79,1	NON	
5000	5	76,6	NON	
6300	5	73,1	NON	
8000	5	69,0	Données insuffisantes	

^{*} ND: Non disponible

<u>Analyse des résultats :</u>

A partir de l'analyse des niveaux non pondérés en bandes de tiers d'octave, aucune tonalité marquée n'est détectée, pour la vitesse de vent de 7 m/s.

Le risque de non-respect du critère réglementaire est jugé faible.

12. CONCLUSION

A partir de l'analyse des niveaux résiduels mesurés et de l'estimation de l'impact sonore, une évaluation des dépassements prévisionnels liés à l'implantation de 7 éoliennes de type G114 de chez GAMESA (hauteur de moyeu 125m et d'une puissance de 2 MW) sur le site des Gassouillis (87) a été entreprise.

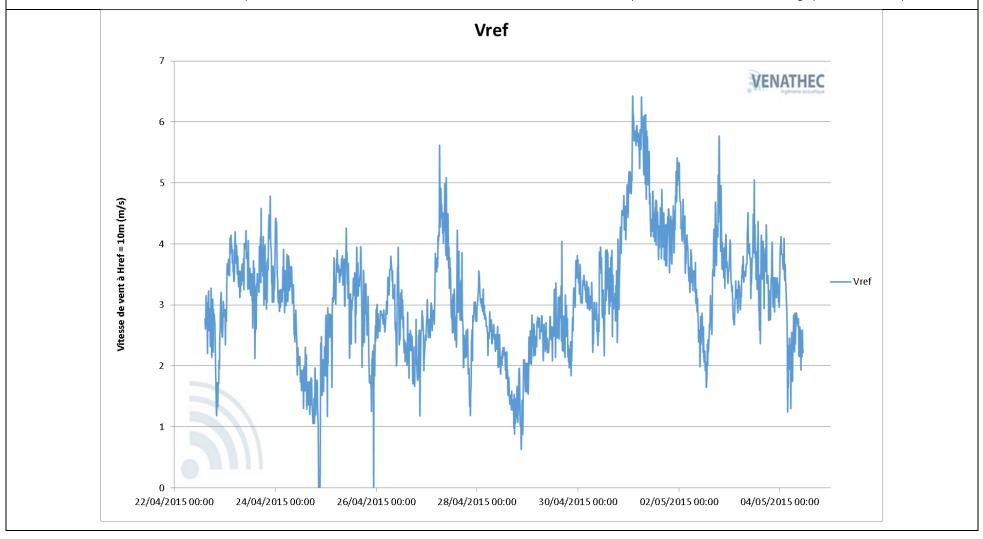
Les résultats obtenus, sans restriction de fonctionnement des machines, présentent un risque de non-respect des impératifs fixés par l'arrêté du 26 aout 2011, jugé faible en période diurne et très probable en période nocturne.

Des plans d'optimisation du fonctionnement du parc ont par conséquent été élaborés, pour les deux directions dominantes (sud-ouest et nord-est) et pour chaque classe de vitesse de vent. Ces plans de fonctionnement, comprenant le bridage et/ou l'arrêt d'une ou plusieurs machines selon la vitesse de vent, permettent d'envisager l'implantation d'un parc éolien satisfaisant les seuils réglementaires.

Les niveaux de bruit calculés sur le périmètre de mesure ne révèlent aucun dépassement des seuils réglementaires définis par l'arrêté du 26 août 2011 (70 dBA en période diurne, 60 dBA en période nocturne).

A partir de l'analyse des niveaux non pondérés en bandes de tiers d'octave, aucune tonalité marquée n'est détectée, pour la vitesse de vent 7 m/s.

Compte tenu des incertitudes sur le mesurage et les calculs, il sera nécessaire, après installation du parc, de réaliser des mesures acoustiques pour s'assurer de la conformité du site par rapport à la réglementation en vigueur.


Ces mesures devront être réalisées selon la norme de mesurage NFS 31-114 « Acoustique - Mesurage du bruit dans l'environnement avec et sans activité éolienne », et pour les deux directions de vent dominantes du site.

13. **ANNEXES**

ANNEXE A: CONDITIONS METEOROLOGIQUES RENCONTREES SUR SITE	65
ANNEXE B : CARACTERISTIQUES DES EOLIENNES	66
ANNEXE C : APPAREILS DE MESURE	69
ANNEXE D : CARTOGRAPHIE SONORE A 8 M/S	70
Annexe e : choix des parametres retenus	71
ANNEXE F : EVOLUTION TEMPORELLE DES LAEQ	72
ANNEXE G : INCERTITUDE DE MESURAGE	77
ANNEXE H : ARRÊTE DU 26 AOÛT 2011	79

ANNEXE A: CONDITIONS METEOROLOGIQUES RENCONTREES SUR SITE

Données de vent durant la période du 22 avril au 04 mai 2015 sur le site des Gassouillis (Hauteur du mât météorologique Href=10m)

ANNEXE B: CARACTERISTIQUES DES EOLIENNES

Coordonnées des éoliennes

	Lambert II étendu							
Description	X	Υ						
E1	489291	2143257						
E2	489342	2142973						
E3	489457	2142711						
E4	489764	2143441						
E5	489805	2143193						
E6	489876	2142987						
E7	489982	2142805						

Données acoustiques des éoliennes de type G114 de chez GAMESA

GENERAL CHARACTERISTICS MA

Confidentiality	"3 / CUSTOMER IN	FORMATION
ANUAL	Code: GD193033-en	Rev: 1
	Date: 17/06/15	Pg. 7 of 7

G114 2.0MW CIIA/CIIIA 50/60 Hz Wind Turbine Power Curve and noise emission level

NOISE LEVELS

Estimate of aeroacoustic noise emitted by the rotor of the G114 CIIA/CIIIA 2.0MW wind turbine, simulated for different tower heights (H) and wind speeds at 10m above ground level (W₁₀).

Table 6 includes the numerical values for the estimated Lw noise level in dB(A) for the different wind speeds, from the start-up speed, 3m/s.

	Н :	H = 80m		H = 80m H = 93m		H = 120m (concrete)		H = 125m	
W ₁₀	W _s	SPL	Ws	SPL	Ws	SPL	W ₈	SPL	
[m/s]	[m/s]	[dB(A)]	[m/s]	[dB(A)]	[m/s]	[dB(A)]	[m/s]	[dB(A)]	
3	4.2	94.4	4.3	94.4	4.5	94.4	4.5	94.4	
3.5	4.9	94.4	5	94.4	5.2	94.4	5.2	94.4	
4	5.6	94.9	5.7	95.4	6	96.4	6	96.6	
4.5	6.3	97.6	6.4	98.1	6.7	99.1	6.7	99.2	
5	7	100	7.1	100.5	7.4	101.4	7.5	101.6	
5.5	7.7	102.2	7.9	102.7	8.2	103.7	8.2	103.8	
6	8.4	104.2	8.6	104.6	8.9	104.6	9	104.6	
6.5	9.1	104.6	9.3	104.6	9.7	104.6	9.7	104.6	
7	9.8	104.6	10	104.6	10.4	104.6	10.5	104.6	
7.5	10.5	104.6	10.7	104.6	11.2	104.6	11.2	104.6	
8	11.2	104.6	11.4	104.6	11.9	104.6	12	104.6	
8.5	11.9	104.6	12.1	104.6	12.6	104.6	12.7	104.6	
9	12.6	104.6	12.9	104.6	13.4	104.6	13.5	104.6	
9.5	13.2	104.6	13.6	104.6	14.1	104.6	14.2	104.6	
10	13.9	104.6	14.3	104.6	14.9	104.6	15	104.6	

Table 6 Noise levels of the G114 CIIA/CIIIA 2.0MW wind turbine for different H [m], W 10 [m/s] and W 8 [m/s].

IBE-1-001-R01 (an) Edition 2

Confidentiality: 3	CUSTOMER INFORMATION
--------------------	----------------------

0	ENERAL CHARACTERISTICS MANUAL	Code: GD193034-en	Rev: 2				
		Date: 17/06/15	Pg. 19 of 19				
G114 2.0MW CIIA/CIIIA 50/60 Hz Power and Noise curves for low noise operating							

Table 19 represents the noise curves of the G114 CIIA/CIIIA 2.0MW wind turbine for different noise reduction

modes in function of W $_{10}$ [m/s] and W $_{8}$ [m/s] for the 125m tower.

	H = 125m					
W ₁₀	W ₈	N6	NRS A	NRS B	NRS C	
[m/s]	[m/s]	[dB(A)]	[dB(A)]	[dB(A)]	[dB(A)]	
3	4.5	94.4	94.4	94.4	94.4	
3.5	5.2	94.4	94.4	94.4	94.4	
4	6	96.7	95.1	94.4	94.4	
4.5	6.7	98	97.6	96.7	95.6	
5	7.5	98	100.1	99.3	98.2	
5.5	8.2	98	102.2	101.4	100.3	
6	9	98	104.3	103.5	102.5	
6.5	9.7	98	104.6	104.6	104.1	
7	10.5	98	104.6	104.6	104.6	
7.5	11.2	98	104.6	104.6	104.6	
8	12	98	104.6	104.6	104.6	
8.5	12.7	98	104.6	104.6	104.6	
9	13.5	98	104.6	104.6	104.6	
9.5	14.2	98	104.6	104.6	104.6	
10	15	98	104.6	104.6	104.6	

Table 19 Noise curves of the G114 CIIA/CIIIA 2.0MW wind turbine for a tower height of 125m.

IBE-1-001-R01 (an) Edition 2

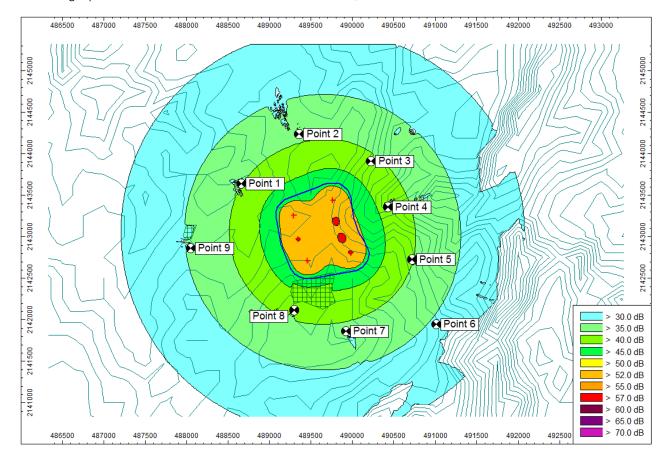
ANNEXE C : APPAREILS DE MESURE

Le tableau ci-dessous récapitule l'ensemble des éléments de la chaîne de mesure :

Nature	Marque	Туре	N° de série
Sonomètres	01dB	SOLO	60164 61299 65674 65675 65676 65677
		DUO	11102 11106
Calibreur	OldB	CAL 21	34134106
Préamplificateur	PRE 21 S	PRE 21 S	Associé au sonomètre*
Microphone	GRAS 40AE	MC E 212	Associé au sonomètre*
Câble	LEMO	LEMO 7	
Informatique	TOSHIBA		

^{*}A chaque sonomètre est associé un préamplificateur et un microphone qui restent inchangés. Le détail des numéros de série est disponible à la demande.

ANNEXE D : CARTOGRAPHIE SONORE A 8 M/S


La carte sonore est réalisée à l'aide du logiciel CADNAA, spécialisé dans le calcul prévisionnel de propagation sonore environnementale.

Ce logiciel prend en considération les paramètres tels que le bâti, la topographie, la végétation...

Selon la norme ISO 96-13, le calcul prend en considération les hypothèses d'absorption atmosphérique, d'effet de sol et de réflexions à partir de surface.

Le calcul prend en considération des conditions favorables de propagation dans toutes les directions de vent, ce qui permet de se situer, en théorie, dans les conditions les plus contraignantes pour chaque point de réception, quelle que soit la direction de vent sur site.

La cartographie sonore est réalisée à une hauteur de 1,80 m.

ANNEXE E : CHOIX DES PARAMETRES RETENUS

Calcul Vitesse de vent référence :

La corrélation des niveaux de bruit avec la vitesse de vent s'effectue à la hauteur de référence fixée à 10m.

Les vitesses à cette hauteur de référence ne correspondent pas aux valeurs mesurées à 10m pour les raisons suivantes:

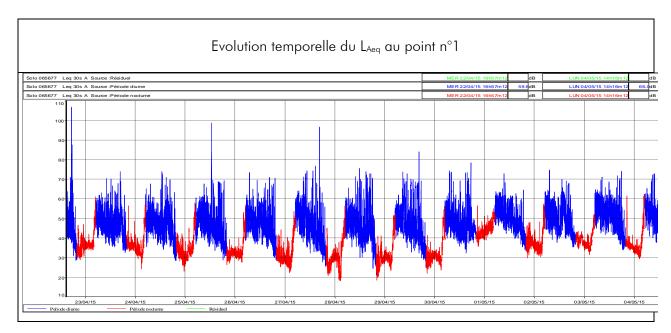
- l'objectif est de corréler les niveaux de bruit résiduels en fonction des régimes de fonctionnement des éoliennes;
- les émissions sonores des éoliennes dépendent de la vitesse du vent sur leurs pâles, approximée à la hauteur de moyeu;
- le profil vertical de vent (cisaillement vertical ou wind shear) influe de manière importante sur la différence des vitesses de vent à 10m au dessus du sol et à hauteur de moyeu ;
- les données de puissance acoustique des aérogénérateurs sont fournies à partir de mesure de vitesse de vent à hauteur de nacelle généralement, reconvertie à 10m à l'aide d'un profil standard (exposant de cisaillement de 0,16 ou longueur de rugosité de 0.05m), conformément à la norme : IEC 61 400 – 11 et 12 « Aérogénérateurs - Techniques de mesure du bruit acoustique »;
- le profil vertical de vent varie de manière plus ou moins importante au cours d'une journée ainsi qu'au cours de l'année, et l'exposant de cisaillement le caractérisant est très fréquemment supérieur à la valeur standard 0,16 en période nocturne.

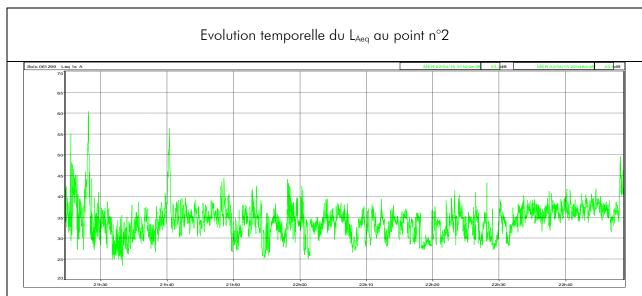
Ainsi, selon les recommandations :

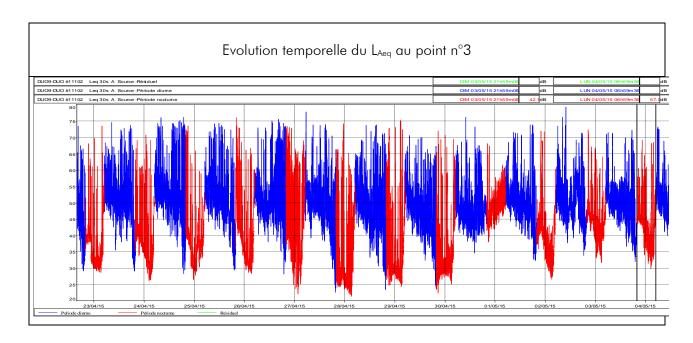
- Du projet de norme NF S PR 31-114 « Acoustique Mesurage du bruit dans l'environnement avec et sans activité éolienne »,
- Guide de l'étude d'impact sur l'environnement des parcs éoliens actualisé en 2010 par le Ministère de l'Écologie, de l'Énergie, du Développement durable et de la Mer,

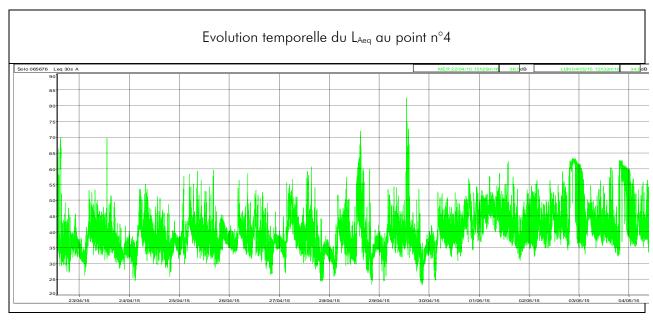
l'objectif est de calculer la vitesse « réelle » à hauteur de nacelle des éoliennes puis de la convertir à la hauteur de référence (fixée à 10m) à l'aide d'une longueur de rugosité standardisée à 0,05m.

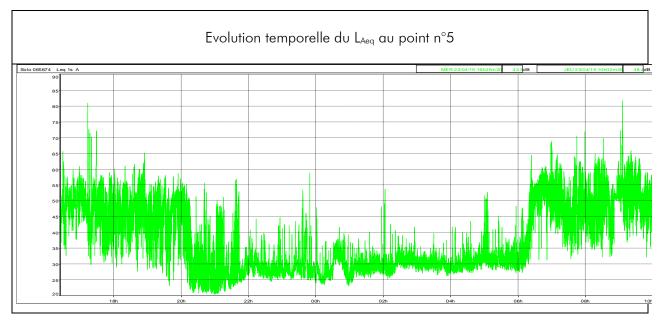
C'est pourquoi, nous avons développé un calcul de vitesse de vent à Hauteur de référence : H_{ref} permettant, à partir des relevés de vitesse à 10 m, d'extrapoler la vitesse de vent à H_{ref}.

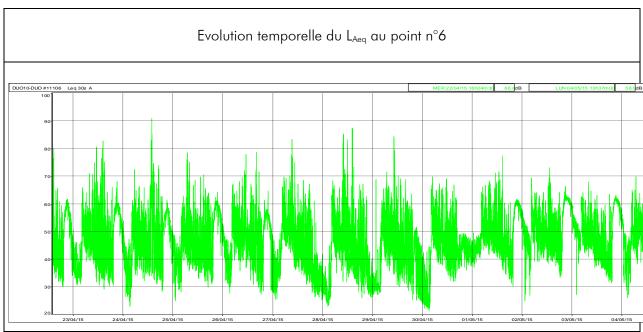

Ce calcul est basé sur les données connues du site concerné (cisaillement moyen diurne / nocturne), sur une analyse qualitative, ainsi que sur des relevés météorologiques annuels de plusieurs sites, et nous permet de prendre en compte une tendance horaire moyenne de l'évolution de l'exposant de cisaillement en fonction de la vitesse de vent.

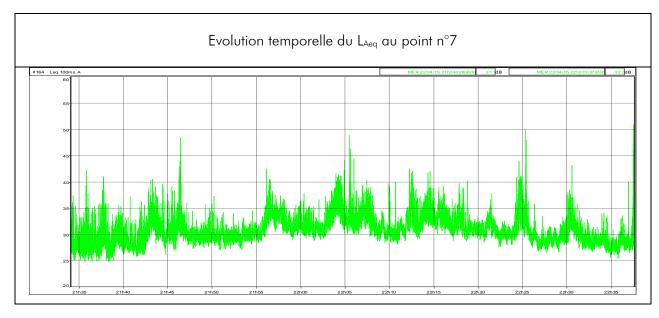

Les valeurs de cisaillements utilisées, issues de mesures long terme sur site étudié, correspondent à :

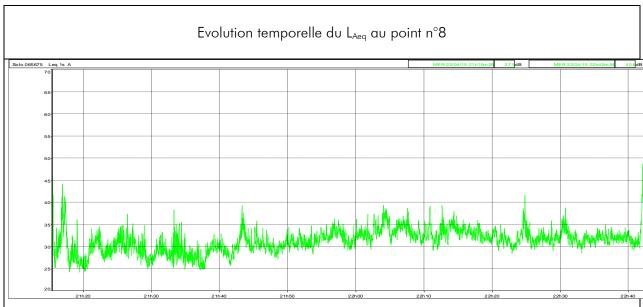

- exposant de cisaillement jour : 0,3707
- exposant de cisaillement nuit : 0,4622

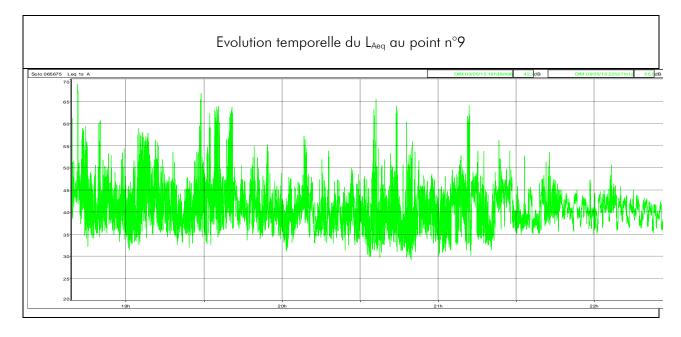



ANNEXE F: EVOLUTION TEMPORELLE DES LAEQ









ANNEXE G : INCERTITUDE DE MESURAGE

L'incertitude recherchée est l'incertitude de mesure du niveau de pression acoustique, quel que soit le phénomène qui est à son origine. Elle est évaluée selon les recommandations du projet de norme NF S 31-114.

Les incertitudes évaluées par cette norme permettent la comparaison des niveaux et des différences de niveaux (émergences) avec des seuils réglementaires ou contractuels.

L'incertitude totale sur l'indicateur de bruit associé à une classe homogène et à une classe de vitesse de vent est composée d'une incertitude (type A) due à la distribution d'échantillonnage de l'indicateur considéré et d'une incertitude métrologique (type B) sur les mesures des descripteurs acoustiques.

Incertitude de type A:

Pour chaque classe homogène et pour chaque classe de vitesse de vent, on calculera :

l'incertitude sur la distribution d'échantillonnage de l'indicateur de bruit ambiant :

$$U_{A}(L_{Amb(j)}) = 1,858 \cdot t(L_{Amb(j)}) \cdot \frac{DMA(L_{Amb(j)})}{\sqrt{N(L_{Amb(j)}) - 1}}$$

l'incertitude sur la distribution d'échantillonnage de l'indicateur de bruit résiduel :

$$U_{A}(L_{R\acute{e}s(j)}) = 1,858 \cdot t(L_{R\acute{e}s(j)}) \cdot \frac{DMA(L_{R\acute{e}s(j)})}{\sqrt{N(L_{R\acute{e}s(j)}) - 1}}$$

Avec:

L_{Amb(i)} : ensemble des descripteurs de bruit ambiant pour la classe de vitesse de vent « j » L_{Rés(i)} : ensemble des descripteurs de bruit résiduel pour la classe de vitesse de vent « j »

 $N(X_{(i)})$: nombre de descripteurs de $X_{(i)}$ pour la classe de vitesse « j »

 $t(X_{(i)})$: correctif pour les petits échantillons $X_{(i)}$ pour la classe de vitesse « j »:

$$t(X_{(j)}) = \frac{2 \cdot N(X_{(j)}) - 2}{2 \cdot N(X_{(j)}) - 3}$$

Fonction DMA(X $_{(j)}$) = Médiane ($X_{(j),i}$ - Médiane ($X_{(j),i}$): déviation médiane (en valeur absolue) par rapport à la médiane de l'ensemble des descripteurs (indicés « i ») de bruit X (s'appliquant aussi bien au bruit ambiant ou au bruit résiduel).

$$U_A(E_{(j)}) = \sqrt{U_A(L_{Amb(j)})^2 + U_A(L_{Rés(j)})^2}$$

Incertitude de type B:

Incertitude métrologique :
$$U_B(L_{Amb(j)}) = \sqrt{\sum_k U_{Bk}(L_{Amb(j)})^2}$$

Avec U_{Bk}(L_{Amb(i)}) : composantes de l'incertitude métrologique indicées « k » sur la mesure du bruit ambiant, pour la classe de vitesse « j ».

Le tableau suivant permettra d'évaluer les U_{Bk}(L_{Amb(i)}).

U_{Bk}	Composante	U (Ambiant) ou (Résiduel) ou U(Emergence)	Incertitude type	Condition	
U _{B1}	Calibrage	L amb - res	0,20 dB ; 0,20 dBA	Durée maximale entre	
OBI	Cambrage	E	Négligeable	deux calibrages : 15 jours	
1.1	A : !!!	L amb - res	0,20 dB; 0,20 dBA		
U _{B2}	Appareillage	Е	Négligeable		
U _{B3}	Directivité	L amb - res et E	0,52 dBA	Direction de référence du microphone verticale	
	linéarité an fréavance et	L amb - res	1,05 dBA		
	Linéarité en fréquence et pondération fréquentielle	E	1,05 √2-2.10 ^{-E/10} dBA		
11	T	L amb - res	0,15 dB; 0,15 dBA		
U _{B5}	Température et humidité	E	0,22 dB; 0,22 dBA		
U_{B6}	Pression statique pour une	L amb - res	0,25 dB; 0,25 dBA		
U _{B6} clas	classe homogène	Е	0,24 dB; 0,24 dBA		
U _{B7}	Impact du vent sur le microphone (en dBA)	L amb - res	Fonction de V et de L _{amb}		
	microphone (en dbA)	Е	Négligeable		
U_{Bvent}	Impact de la mesure du vent	L amb - res	Incertitudes métrologiques indirectes*		
		Е	Négligeable		

^{*} Dépend de la vitesse de vent, du niveau sonore, de la mesure des vitesses de vent

Dans le cas du calcul de l'incertitude U_B sur l'émergence et en raison de la comparaison de niveaux issus de la même chaine d'acquisition, certains composants de l'incertitude sont considérés comme négligeables.

Incertitude combinée sur les indicateurs de bruits ambiant et résiduel :
$$U_{C}(L_{Amb(j)}) = \sqrt{U_{A}(L_{Amb(j)})^{2} + U_{B}(L_{Amb(j)})^{2}}$$

$$U_{C}(L_{R\acute{e}s(j)}) = \sqrt{U_{A}(L_{R\acute{e}s(j)})^{2} + U_{B}(L_{R\acute{e}s(j)})^{2}}$$

Incertitude combinée sur les indicateurs d'émergence :
$$U_{\rm C}(E_{(j)}) = \sqrt{U_{\rm A}(E_{(j)})^2 + U_{\rm B}(E_{(j)})^2}$$

ANNEXE H : ARRÊTE DU 26 AOÛT 2011

Décrets, arrêtés, circulaires

TEXTES GÉNÉRAUX

MINISTÈRE DE L'ÉCOLOGIE. DU DÉVELOPPEMENT DURABLE. DES TRANSPORTS ET DU LOGEMENT

Arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement

NOR: DEVP1119348A

La ministre de l'écologie, du développement durable, des transports et du logement,

Vu la directive 2006/42/CE du Parlement européen et du Conseil du 17 mai 2006 relative aux machines ;

Vu le code de l'environnement, notamment le titre I^{er} de son livre V;

Vu le code de l'aviation civile;

Vu le code des transports;

Vu le code de la construction et de l'habitation;

Vu l'arrêté du 23 janvier 1997 relatif à la limitation des bruits émis dans l'environnement par les installations classées pour la protection de l'environnement;

Vu l'arrêté du 2 février 1998 relatif aux prélèvements et à la consommation d'eau ainsi qu'aux émissions de toute nature des installations classées pour la protection de l'environnement soumises à autorisation;

Vu l'arrêté du 10 mai 2000 relatif à la prévention des accidents majeurs impliquant des substances ou des préparations dangereuses présentes dans certaines catégories d'installations classées pour la protection de l'environnement soumises à autorisation;

Vu l'arrêté du 10 octobre 2000 fixant la périodicité, l'objet et l'étendue des vérifications des installations électriques au titre de la protection des travailleurs ainsi que le contenu des rapports relatifs auxdites vérifications ;

Vu l'avis des organisations professionnelles concernées ;

Vu l'avis du Conseil supérieur de la prévention des risques technologiques du 28 juin 2011;

Vu l'avis du Conseil supérieur de l'énergie du 8 juillet 2011,

Art. 14. - Le présent arrêté est applicable aux installations soumises à autorisation au titre de la rubrique 2980 de la législation des installations classées.

L'ensemble des dispositions du présent arrêté s'appliquent aux installations pour lesquelles une demande d'autorisation est déposée à compter du lendemain de la publication du présent arrêté ainsi qu'aux extensions ou modifications d'installations existantes régulièrement mises en service nécessitant le dépôt d'une nouvelle demande d'autorisation en application de l'article R. 512-33 du code de l'environnement au-delà de cette même date. Ces installations sont dénommées « nouvelles installations » dans la suite du présent arrêté.

Pour les installations ayant fait l'objet d'une mise en service industrielle avant le 13 juillet 2011, celles ayant obtenu un permis de construire avant cette même date ainsi que celles pour lesquelles l'arrêté d'ouverture d'enquête publique a été pris avant cette même date, dénommées « installations existantes » dans la suite du présent arrêté :

- les dispositions des articles de la section 4, de l'article 22 et des articles de la section 6 sont applicables au 1er janvier 2012;
- les dispositions des articles des sections 2, 3 et 5 (à l'exception de l'article 22) ne sont pas applicables aux installations existantes.

Section 1

Généralités

Art. 2. - Au sens du présent arrêté, on entend par :

Point de raccordement : point de connexion de l'installation au réseau électrique. Il peut s'agir entre autres d'un poste de livraison ou d'un poste de raccordement. Il constitue la limite entre le réseau électrique interne et

Mise en service industrielle : phase d'exploitation suivant la période d'essais et correspondant à la première fois que l'installation produit de l'électricité injectée sur le réseau de distribution.

Survitesse : vitesse de rotation des parties tournantes (rotor constitué du moyeu et des pales ainsi que la ligne d'arbre jusqu'à la génératrice) supérieure à la valeur maximale indiquée par le constructeur.

Aérogénérateur : dispositif mécanique destiné à convertir l'énergie du vent en électricité, composé des principaux éléments suivants : un mât, une nacelle, le rotor auquel sont fixées les pales, ainsi que, le cas échéant, un transformateur.

Emergence: la différence entre les niveaux de pression acoustiques pondérés « A » du bruit ambiant (installation en fonctionnement) et du bruit résiduel (en l'absence du bruit généré par l'installation).

Zones à émergence réglementée :

- l'intérieur des immeubles habités ou occupés par des tiers, existant à la date de l'autorisation pour les installations nouvelles ou à la date du permis de construire pour les installations existantes, et leurs parties extérieures éventuelles les plus proches (cour, jardin, terrasse);
- les zones constructibles définies par des documents d'urbanisme opposables aux tiers et publiés à la date de l'autorisation pour les installations nouvelles ou à la date du permis de construire pour les installations existantes:
- l'intérieur des immeubles habités ou occupés par des tiers qui ont fait l'objet d'une demande de permis de construire, dans les zones constructibles définies ci-dessus, et leurs parties extérieures éventuelles les plus proches (cour, jardin, terrasse), à l'exclusion de celles des immeubles implantés dans les zones destinées à recevoir des activités artisanales ou industrielles, lorsque la demande de permis de construire a été déposée avant la mise en service industrielle de l'installation.

Périmètre de mesure du bruit de l'installation : périmètre correspondant au plus petit polygone dans lequel sont inscrits les disques de centre chaque aérogénérateur et de rayon R défini comme suit:

R = 1,2 × (hauteur de moyeu + longueur d'un demi-rotor)

Section 6

Art. 26. – L'installation est construite, équipée et exploitée de façon telle que son fonctionnement ne puisse être à l'origine de bruits transmis par voie aérienne ou solidienne susceptibles de compromettre la santé ou la sécurité du voisinage.

Les émissions sonores émises par l'installation ne sont pas à l'origine, dans les zones à émergence réglementée, d'une émergence supérieure aux valeurs admissibles définies dans le tableau suivant :

NIVEAU DE BRUIT AMBIANT EXISTANT dans les zones à émergence réglementée incluant le bruit de l'installation	ÉMERGENCE ADMISSIBLE POUR LA PÉRIODE allant de 7 heures à 22 heures	ÉMERGENCE ADMISSIBLE POUR LA PÉRIODE allant de 22 heures à 7 heures	
Sup à 35 dB (A)	5 dB (A)	3 dB (A)	

Les valeurs d'émergence mentionnées ci-dessus peuvent être augmentées d'un terme correctif en dB (A), fonction de la durée cumulée d'apparition du bruit de l'installation égal à :

Trois pour une durée supérieure à vingt minutes et inférieure ou égale à deux heures;

Deux pour une durée supérieure à deux heures et inférieure ou égale à quatre heures ;

Un pour une durée supérieure à quatre heures et inférieure ou égale à huit heures ;

Zéro pour une durée supérieure à huit heures.

En outre, le niveau de bruit maximal est fixé à 70 dB (A) pour la période jour et de 60 dB (A) pour la période nuit. Ce niveau de bruit est mesuré en n'importe quel point du périmètre de mesure du bruit défini à l'article 2. Lorsqu'une zone à émergence réglementée se situe à l'intérieur du périmètre de mesure du bruit, le niveau de bruit maximal est alors contrôlé pour chaque aérogénérateur de l'installation à la distance R définie à l'article 2. Cette disposition n'est pas applicable si le bruit résiduel pour la période considérée est supérieur à

Dans le cas où le bruit particulier de l'établissement est à tonalité marquée au sens du point 1.9 de l'annexe à l'arrêté du 23 janvier 1997 susvisé, de manière établie ou cyclique, sa durée d'apparition ne peut excéder 30 % de la durée de fonctionnement de l'établissement dans chacune des périodes diurne ou nocturne définies dans le tableau ci-dessus.

Lorsque plusieurs installations classées, soumises à autorisation au titre de rubriques différentes, sont exploitées par un même exploitant sur un même site, le niveau de bruit global émis par ces installations respecte les valeurs limites ci-dessus.

Art. 27. - Les véhicules de transport, les matériels de manutention et les engins de chantier utilisés à l'intérieur de l'installation sont conformes aux dispositions en vigueur en matière de limitation de leurs émissions sonores. En particulier, les engins de chantier sont conformes à un type homologué.

L'usage de tous appareils de communication par voie acoustique (par exemple sirènes, avertisseurs, hautparleurs), gênant pour le voisinage, est interdit, sauf si leur emploi est exceptionnel et réservé à la prévention et au signalement d'incidents graves ou d'accidents.

Art. 28. – Lorsque des mesures sont effectuées pour vérifier le respect des présentes dispositions, elles sont effectuées selon les dispositions de la norme NF 31-114 dans sa version en vigueur six mois après la publication du présent arrêté ou à défaut selon les dispositions de la norme NFS 31-114 dans sa version de juillet 2011.

Fait le 26 août 2011.

Pour la ministre et par délégation : Le directeur général de la prévention des risques, L. MICHEL